Enhancing the Trustworthiness of Service
On-Demand Systems via Smart Vote Filtering

Christos V. Samaras®), Ageliki Tsioliaridou, Christos Liaskos,
Dimitris Spiliotopoulos, and Sotiris Ioannidis

Foundation of Research and Technology - Hellas (FORTH), Heraklion, Greece
{csamaras ,atsiolia,cliaskos,dspiliot, sotiris}@ics .forth.gr

Abstract. Service on-demand (SoD) systems allow their users to reg-
ulate the sharing of common resources via a voting process. A com-
mon application example is the collaborative scheduling of multimedia
transmissions in e-radio or video streaming services. Therefore, high user
commitment and participation is critical to the success of a SoD system.
Securing a SoD system against common attacks, such as vote flooding,
can impose client anonymity retraction, online registering and access
control mechanisms. Nonetheless, such processes can degrade the users’
quality of experience, discouraging user participation. The present study
proposes a defense mechanism against vote flooding attacks that can
operate under complete vote anonymity and without any user access
restrictions. The novel scheme is implemented as a vote filtering scheme,
executed prior to each service scheduling decision. The proposed scheme
has linear complexity and is shown via simulations to considerably mit-
igate or completely negate the effects of several attacks types.

Keywords: Service on-demand - Client anonymity - Security : Query
filtering

1 Introduction

Service on-demand (SoD) systems constitute a particularly attractive means of
resource sharing and large-scale information dissemination. Users of SoD systems
can influence how often a server supplies a service via a voting system. For
instance, users of video-on-demand or e-radio systems can regulate the broadcast
frequency of multimedia files [25,27]. Therefore, high and unobstructed user
participation is critical to the operation and economic viability of SoD systems,
accentuating the need for user-friendliness. To this end, SoD systems may need
to operate on anonymous user votes and without any access control method
that may degrade the users’ quality of experience [26]. On the other hand, such
requirements facilitate the misuse by malevolent users who may, e.g., flood the
system with vast amounts of votes for personally preferred services, degrading
the trustworthiness of the process.

SoD systems typically follow a centralized architecture, comprising a server
and a set of clients in a virtual star topology. The server supports a set of

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 838-103, 2015.
DOI: 10.1007/978-3-319-22846-4_6

Enhancing the Trustworthiness of Service On-Demand Systems 89

actions that are provided in a cyclic fashion. After the end of an action, the
server proceeds to select the next action for execution. The selection is derived
from the votes of the users, which arrive continuously at the server and are
promptly enqueued. The selection process can consider the arrival times of the
votes at the server, as well as the total number of votes pertaining to each
supported action. Typical selection processes are the First Come-First Served,
Most Requests First and the RxW scheduler which takes into account both
considerations [13]. Given that the arrival time of a vote at the server cannot
be tampered with, a malevolent user may seek to influence the total number
of votes pertaining to one or more actions. Thus, the selection process can be
forced to produce results that no longer correspond to the preferences of the
normal (benevolent) users of the system.

Existing voting systems employ access control and user identification mech-
anisms in order to: (i) discourage or disable vote-flooding attacks and (ii) detect
the perpetrator in case of a successful attack [9,20]. A commonly followed access
control approach is to employ CAPTCHASs, automated challenge-response Tur-
ing tests, to disable vote flooding by bots [32,39]. However, the process is time-
consuming and degrades the quality of experience of the normal users.
Furthermore, the users may be requested to register to the system with an online
account, compromising their anonymity. Some approaches employ an interme-
diate anonymization server, which removes personal information from the vote
of a user prior to forwarding it to the SoD system [11]. Nonetheless, this app-
roach simply delegates the identification and access control process to another
system and still degrades the quality of experience. Furthermore, the approach
requires additional equipment, increasing the capital and operational expenses
of the system.

The present paper proposes a mechanism for defending against vote flooding
attacks in SoD systems, which requires no access control and does not com-
promise the anonymity of the users, even under attack. It can be classified as
a first-line, low-complexity defense mechanism that is implemented as a vote
filtering mechanism. The methodology of the presented scheme comprises an
attack detection and an actuation process. For the detection purposes, the votes
of the users are mapped to a stream of alarm indications, each designating the
presence or absence of malevolent behavior. A specially-designed, low-complexity
variation of the Misra-Gries algorithm [31] deduces the most frequent indication,
thus raising an alarm or deducing normal operation. In the case of an alarm,
the actuation process is activated and proceeds to filter the users’ votes prior
to every new scheduling decision. The success of an attack is measured in terms
of the increase it induces to the user query service ratio and service times. In
retaliation, the proposed scheme succeeds in keeping these metrics close to their
normal operation counterparts under several attack cases. Thus, it can promote
the trustworthiness of a SoD system, without compromises in the users’ quality
of experience.

The remainder of this paper is organized as follows. The related work on
trustworthy voting systems is given in Sect.2. The prerequisites for the pre-
sentation and presentation of the novel scheme follow in Sect. 3. The scheme is

90 C.V. Samaras et al.

detailed in Sect. 4 and evaluated via simulations in Sect. 5. Finally, the conclusion
is given in Sect. 6.

2 Related Work

Research on secure service-on-demand systems has not proposed a voting mech-
anism that can operate on anonymous users with no access restrictions, to the
best of the authors knowledge. However, there exists a considerable amount of
work on electronic voting systems and polling protocols in general, which has
concentrated on a diverse set of desired properties and functionality such as accu-
racy, privacy, verifiability, eligibility, coercion resistance, availability and fault-
tolerance. A number of protocols, models, prototypes, and real-world systems
have been proposed and implemented to support e-voting and polling functions.

Electronic voting schemes are mainly divided into three categories, based
on the technique used to anonymize votes: (i) Homomorphic encryption allows
computations to be carried out on ciphertext, thus generating an encrypted
result which, when decrypted, matches the result of operations performed on the
plaintext. Protocols based on homomorphic encryption generally have a complex
mathematical structure thus inducing high computational costs. (ii) In blind
signature approaches the content of message/vote is disguised (blinded) before
it is signed, thus the signer (authenticator) is not given any knowledge about
the message. The voter unblinds the signed vote and submits it to the tallier
through an anonymized channel. Blind signature protocols usually exhibit the
advantages of simplicity, low computational costs and being ballot independent.
(iii) A mix network (mixnet) is a multistage system that uses cryptography and
permutations to provide anonymity. The design of a mixnet is based on providing
anonymity for a batch of inputs, by changing their appearance and removing the
order of arrival information. In mix network schemes, voters authenticate and
submit encrypted votes; votes are anonymized using a mix; and anonymized votes
are then decrypted. Mix network protocols involve less voter’s interactions, but
require complex proofs of correctness.

E-voting and polling have been an active area of research posing several
new challenges [2,16,19,23, 34, 38]. Comparison of existing voting schemes reveals
common security property tradeoffs [35]. REVS [22] is an electronic voting sys-
tem based on blind signatures and designed for distributed and faulty environ-
ments, which exploits server replication to allow a certain degree of failures.
Sensus [11] is a secure and private system for polling that requires at least two
servers, namely a validator and a tallier, for conducting an election or a survey
(i.e., a generic term of polling is considered). In [3] authors propose a prototype
implementation of SEAS, which is a portable and flexible system that preserves
the limited number of servers of the above-mentioned Sensus, but it avoids a
vulnerability that allows one of the entities involved in the election process to
cast its own votes in place of those that abstain from the vote. Civitas [9] is based
on mix networks and enforces verifiability (an integrity property) and coercion
resistance (a confidentiality property), whereas it does not rely on trusted super-
vision of polling places, making it a remote voting system.

Enhancing the Trustworthiness of Service On-Demand Systems 91

In the literature there also exist studies on polling protocols [5,14,17,20,21,
37], which cover areas such as: distributed polling, privacy, secret sharing, scala-
bility, social networks, peer-to-peer networks, and reputation systems. However,
anonymity systems are of significant practical relevance because they are the
best means of providing privacy for users. Further works relating to e-voting
and to methods for achieving anonymity and providing privacy for users, can be
seen in [4,6-8,10,15,24,28-30,41].

Given that existing systems do not cover the needs of SoD systems for com-
plete client anonymity and unrestricted access, the authors proposed an initial
solution based on early filtering of client queries [26]. The study defined prob-
able attack types and proposed a defense mechanism based on the Dendritic
algorithm, a nature-inspired process for intrusion detection based on danger and
safety signals. However, being a nature-inspired heuristic, the mechanics of the
Dendritic algorithm are still not well understood [18]. Particularly, it is not clear
how to parametrize and map the danger and safety signals to real attributes
of a given system. Thus, while the proposed Sensor Swarm Filter process was
shown to efficiently defend against several attack types, it could not account for
common attacks, such as random query flooding.

The present study proposes a superior query filtering process that: (i) is based
on the well-studied Misra-Gries classification algorithm [31], and (ii) utilizes
parameters that have an intuitive and clear meaning within the context of the
voting system.

3 Prerequisites

We assume a service-on-demand system, comprising a server and a set of con-
nected clients. The server hosts a number of service “items” (actions), each with
its own service time. The clients post queries in order to vote for the next action
to be taken by the server. In order to derive the next service action, the server
employs the RxW scheduler without preemption support, but enhanced to han-
dle actions with different processing times [1,36]. The RxW scheduler selects
the action with the highest number of hits, multiplied by the queuing time of its
oldest query.

The preferences of each client regarding the service actions are unknown to
the server, and are expressed as personal probability mass functions (p.m.f.):

N
pee=1...Cli=1..N,: Y poi=1 (1)
=1

which denotes the percentage of queries of client ¢ = 1. .. C that refer to action i.

In order to establish a dependable ground-through on the popularity of each
action, an external, trusted entity provides the server with an approximate, per-
action p.m.f. as:

N
Pi=1..N:Y Pi=1 (2)
=1

92 C.V. Samaras et al.

For example, in the case of a video on-demand service, the popularity of each
movie “item” can be derived by its ranking in online services (e.g., the Inter-
net Movie Database), hits in social networks (e.g., Tweets) or direct polling of
trustworthy, authenticated users (critics).

Each service action may be requested multiple times over the operation of
the system by any user, without restrictions. On the client-side, each benevolent
user poses a query for a single service action and awaits for a maximum time
interval D (deadline). The server is oblivious to deadline expiration events, since
such an ability would be open to extensive misuse, even by non-expert users. If D
elapses and the server has not started to process the requested action, the client
abandons the query. Regardless of the outcome (served or not) a client poses a
new query after a random ThinkTime [25]. The service ratio of the system is
defined as the total number of served queries over all clients divided by the total
number of posed queries.

Finally, the attacker model of [26] is assumed. According to it, a malevolent
user performs query flooding in order to tip the RxW scheduler to their favor.
An attack by a malevolent user is defined as:

{target, T, ts, te} (3)

where ¢4 is the time moment when the user begins posting consecutive queries
with mean interarrival T' until time t.. The target of these queries, i.e., the action
that is being requested, defines the attack types introduced in [26]:

— Needed action. “Selfish” behavior which constitutes at flooding the sched-
uler with requests for the personally needed service action.

— Random action. Flooding the server with random queries.

— Less popular action. The scheduler is flooded with multiple requests for
the less wanted service action.

— Lengthiest action. The scheduler is forced to yield the most time-consuming
service, delaying all other actions.

— Smallest popularity-to-size ratio action, which combines the preceding
attacks.

The last three attack types assume that a malevolent user has obtained an
approximation of the the P; p.m.f..

The proposed scheme seeks to improve the trustworthiness of the system by
(ideally) keeping the service/expiration ratio and the mean service time unal-
tered, despite the presence of an increasing number of malevolent users.

4 Misra-Gries-Based Query Filtering

A service-on-demand system defines a cycle of operation given in Fig. 1. A server
selects and executes an action from a given pool, based on the preceding votes
of the users. While the action is executed, the server enqueues all incoming
votes in a single queue, logging their arrival times as well. Once the execution

Enhancing the Trustworthiness of Service On-Demand Systems 93

Enqueue
incoming
: votes

Provide voted

action
On Action
Completed
Deduce alarm Rilior d Deduce next
per action enqueue action
votes

Fig. 1. State chart of the service on-demand system, combined with the proposed
defense mechanism.

Watcher of Action "i"

,-" | Time Horizon 3 | Pobsem’d
' | “iH,
| Time Horizon 2 |]P)nh.vcrm/
| i,H,

Time Horizon 1]P)obxmen'
i,H,

DEDDDEEDDDDD —

Incoming client queries

Server Queue

<«
Time

Fig. 2. Operation of an action “watcher”, responsible for raising an alarm when the
observed rate of incoming queries for the action, P°**¢"¢? consistently surpasses the
expectation P.

of the current action is complete, the server proceeds to select the next action
for execution, given the user votes and the employed scheduler (e.g., RxW). The
proposed defense mechanism takes action before the execution of the scheduler,
by filtering the votes accumulated at the queue of the server. In this aspect,
the proposed mechanism has the added advantage of not disrupting the normal
operation of the used scheduler.

The defense mechanism comprises two components: the threat detection mod-
ule and the actuation module (i.e., query filtering).

The operation of the threat detection module is illustrated in Fig.2. It com-
prises a set of N watcher processes running as daemons on the server. Each
watcher is responsible for detecting suspicious queries pertaining to a single
action offered by the server, with 1 — 1 correspondence. The watcher of action
i processes all incoming client queries before they enter the server’s queue, and
logs the running ratio of i—query occurrences, PObs””ed over three different time
horizons, Hy, Hy, H3. For example, if the span of time horizon Hi is S = 100
incoming client votes and action ¢ was requested n = 10 times within this win-
dow, then P5erved = n/s = 0.1.

94 C.V. Samaras et al.

The]P’Ob"’””"d logging over three time horizons makes for fast attack detec-
tion (smaller horizon, Hy), vigilance after the attack (medium horizon, Hy) and
indications of long-term attacks that may call for additional security measures
(large horizon, Hs), such as CAPTCHA checks and client identification requests.
The span of the time horizons can be set intuitively. For example, assuming that
min {P;} = p, Hy can be set at [1/p], i.e., the span that accentuates the pres-
ence of votes for the least probable actions. H3 can be set to a maximum allowed
attack duration, and Hy in a value within [Hy, Hs).

Once the]P’Obse“’ed values have been derived for each horizon, the attack
detection module proceeds to compare them to the P; expectations and deduce
whether they constitute threat indications. This task is accomplished by the
Misra-Gries (MG) classifier, incorporated to the watcher process.

The employed variation of the MG algorithm extracts the most frequent
object from a running stream [31]. MG assumes an associative array indexed by
the objects, ctroy;, which are initialized to zero. For each incoming object, MG
increases ctrop; by one and decreases all other counters by one unit. If a counter
has become negative, it is reset to zero. After K steps, the classifier yields the
most common object, obj*, as

obj* = argmax {ctrop; } (4)

From the (K + 1)th step and on, the MG process retains the classification result,
but the ctryy; counters are reset to zero and the process starts over. Thus, the
classification result is updated at the (2 - K)th step. The storage overhead of MG
is O(m), where m is the total number of possible objects, while its complexity
is constant, O(1).

In the case of the proposed defense mechanism, the MG objects are the
Boolean outcomes of the comparisons:

P?7li€‘}erved > Pi (5)

i.,e., m = 2. In other words, MG deduces whether the votes pertaining to an
action ¢ are persistently higher than the expectations, implying that an attack
may be in progress. In this case, MG is said to raise an “alarm”. Three MG
instances are used within each action watcher, each deducing the alarm state
over the three time horizons. The action watcher then yields an alarm state for
the monitored action if any of the three MG processes is positive.

The set of watchers, one per available server action, thus yield a Boolean
alarm level per action, A;, at any requested time moment.

The actuation module (query filtering process of Fig.1, formulated as
Algorithm 1) takes place before relinquishing operation to the RxW scheduler.

At first, Algorithm 1 counts the number of occurrences of each query for
action ¢ within the server queue (lines 3 — 5). The Algorithm then proceeds to
calculate the expected (proper) occurrences for each action with a raised alarm
flag, A; (lines 8 — 12). However, it is possible that certain actions have presently
zero occurrences within the queue (e.g., when the corresponding P; is low).

Enhancing the Trustworthiness of Service On-Demand Systems 95

Algorithm 1. Query filtering process.
INPUTS:

1. Presently Enqueued Queries Qx, k =1...Q;
2. Expectations P;, ¢t =1...N;
3. Binary Alarm State per Action A;, i =1...N.

times; <+ 0, Vi=1...N;
proper_times; < 0, Vi=1...N;
fork=1...Q

timesq, = timesg, + 1;
end for
51 =3 (1. Nitimes;=0} Pis
proper_times; < times;, t =1... N,
fori=1...N

9: if times; > 0 and A;
10: proper_times; «— L%J,
11: end if
12: end for
13: fori=1...N
14: if times; > proper_times;
15: Remove the most recent proper_times; — times; queries for action ¢ from the
server queue.
16: end if
17: end for

The cumulative probability of these actions is logged (line 6) and is distrib-
uted to other actions with times; # 0 within the queue (line 10). This approach
ensures a less aggressive but more fair query filtering, since it takes into account
that zero action occurrences within the queue are normal from time to time.

The actual query filtering then takes place at lines 13 — 17. The occurrences
of each query type are reduced to their expected values by discarding the newest
queries first. Notice that the RxW scheduler schedules then next action for exe-
cution by checking the product of occurrences multiplied by the maximum query
waiting time for each action. Therefore, given the importance of waiting times,
discarding newest queries first ensures that older, potentially legitimate queries
are not harmed by the filtering process.

The maximum storage overhead and complexity of Algorithm1 is O(N),
which also represents the complexity of the complete defense mechanism, given
that static requirements of the MG and Pff’]je”e”l logging sub-processes.

5 Simulations

In this Section, the performance of the proposed Misra-Gries Filtering (MGF)
is compared via simulations to the Sensor Swarm Filtering (SSF) of [26]. The
simulator, implemented on the Anylogic platform [40], represents a broadcast on-
demand system, where “actions” correspond to “Web page items” with dynamic

96 C.V. Samaras et al.

content. The runs evaluate the ability to maintain acceptable service ratios and
mean service times while the system is under attack.

The system configuration assumes a star topology comprising a broadcast on-
demand server, connected to C' = 100 clients via 20Mbps links. The upstream
direction (client-to-server, for posting queries) is considered trivial.

The server schedules its transmissions by employing the R x W on-demand
scheduler. Each transmission pertains to an item selected from a static pool of
N = 100 items with random sizes I; € [1,10] K Bytes (uniformly distributed),
representing simple Web pages.

The query deadline is set to 100 msec due to the low item size/channel rate
ratio. Should the deadline be exceeded, the query is dropped and global query
service ratio is updated. Else, the query is answered successfully, and the aver-
age, global service time is updated. The clients’ ThinkTime is picked uniformly
within [0, 10] sec.

The client query posing process operates as follows. Each client ¢ has preset
preferences in the form of a p.m.f. over the items, p.;, 2 = 1...N, which is
unknown to the server. IP; is derived from a distributed consensus process. We
assume that the clients participate in a separate social network. The server also
participates as a single peer. In this network, each peer has a random number
of friends (other peers), which are represented as a connected graph. Each peer
c assigns a random weight g, € (0,1) (uniformly distributed) to each mem-
ber of his local network k£ = 1...K, which comprises himself and his friends.
A distributed consensus is a rumor propagation process and g, j expresses the
effect of a friendly peer on the formation of the personal opinion. A peer may

also use different sets of g, weights for each data item 4 (i.e., gc). The sole
restriction that must hold is Zfil 9o ki = L.

The consensus process then operates as follows. Each peer initializes its esti-
mate,]P’Sflf), as his personal preferences, p.;, ¢ = 1...N. This estimate is then
sent to his immediate friends. Each peer collects the incoming estimates of all

his friends and updates his estimate as:

]P’S:lf) —]P)Sflf) *Ye,self,i + Z IP() *Yek,is Vi (6)
k=1...K, k#self

As proven in [12], the process converges iteratively, leading to]P’(Self) ~ P;, Ve, Vi.

Normalization is finally applied to ensure that > P; = 1. The P(Self) update
period was set to 1sec and convergence was typically achieved in 10 sec. The
pe.i preferences were set to yield a Zipfian p.m.f., P; oc i7%? which has been
observed to describe client requests for Web pages [33]. Thus, both the server
and the malevolent users acquire P; anonymously, without knowledge of the
individual p.;. At that point, a varying number of malevolent users, ranging
from 1 — 10% - C, attack with a period of T' = 1msec each. The percentage of
malevolent users is assumed not to surpass 10 % of the total users. Notice that
an on-demand system serves common needs. Thus, if the malevolent users were
the majority, or even a considerable minority, the system would inevitably abide

Enhancing the Trustworthiness of Service On-Demand Systems 97

o 08 Sensor Swarm Filtering

"5 =® - No Filtering

> 06 1l _&— Misra—-Gries Filtering o-"" -0---- O
£ .

x 0.4 .

o .

> ’,

c 0.2 4

3 == —(? A#F::#

0

L

4
Percentage of malevolent users

60
40 /G\\
/’ .GN
o’ i
20 . 0 - -
.- . A
A
0 2 6 8 10

Mean query serving time (msec)

Fig. 3. Effects of the “Needed action” attack on the performance of the system.

by their preferences. Furthermore, assuming a great percentage of highly skilled
users is not expected in general.

The proposed MGF uses a single watcher per item, monitoring the incoming
client queries over three horizons, hy = 10, hy = 30 and h; = 50 (measured
in number of queries). Each internal Misra-Gries process yields a classification
result every K = 20 threshold events. Thus, the watcher process may deduce the
alarm state every 200, 600 and 1000 queries. Given that min {P;} = 0.02, the
horizons hj_3 take the values of 4, 12 and 20, which roughly correspond to = 1,
~ 10 and 20 appearances of the less popular item per threshold event. Finally,
all SSF parameters are taken directly from [26].

The query service/expiration ratio and mean service time are logged and the
simulation ends when a 95 % confidence has been attained. The results presented
below correspond to mean values derived over 10 Monte Carlo runs, randomly
varying the item sizes and the client preferences.

Figure 3 studies the robustness of the proposed MGF under a progressively
aggravating “Needed action” attack. MGF is shown to surpass SSF, while essen-
tially nullifying the attack. The query expiry ratio is kept at near-zero, while the
mean service time is constant, regardless of the increasing number of attackers.
On the other hand, SSF mitigates the attack for up to ~ 5% malevolent user
percentage. From that point and on, the query expiry ratio and the service time
increases steadily, with a rate double than the proposed MGF. The behavior
of the system in absence of any filtering is provided to show the impact of the
attack. Without any defense mechanism, approximately 60 % of the queries are
dropped. The service time decreases only when a considerable amount of queries
has been dropped. Therefore, MGF can be used to provide non-disrupted system
performance, even under attack.

98 C.V. Samaras et al.

08 - Sensor Swarm Filtering
o =® - No Filtering
© 0.6 | | —&— Misra-Gries Filtering
2> Fas & = -©
04t K N A A
g 0.2
=]
(¢)

0)

5 0 2 4 6 8 10
(9]
(2]
E60
Q
£ e =)
(=2
£
g A A —\
1]
>
[}
=)
o 0 I n n 1)
S 0 2 4 6 8 10
g Percentage of malevolent users

Fig.4. The “Random action” query flooding is the most effective attack type. The
proposed SSF is the only one offering a considerable degree of resilience.

0.03

2 Sensor Swarm Filtering . ()

g 0.02 | = © - No Filtering L’

E ’ —&— Misra-Gries Filtering R4

5 02

> 001 [e

] ,

= .,

° e ® ® o A .
D 0 2 4 6 8 10
Q
(2]

E g0, -0
o) -
£ .--O
5 .o
220 _-0""
2 o

108 - -="~
% ?\A A A A Y |
g- 0 1 1 1 1 J
o 0 2 4 6 8 10
é’ Percentage of malevolent users

Fig. 5. The behavior of the system under a “Less popular action” attack.

Malevolent users may also attempt to flood the server with random queries.
This case is examined in Fig. 4. According to [26], this type of attack is the most
effective in the examined voting systems. This can be explained if we consider
that a random attack of just a few users is tantamount to a high number of
attackers launching a “Needed action” attack. As a result, SSF is not able to
offer any defense against a “Random item” attack, even when the number of
malevolent users is very low. On the other hand, the proposed MGF performs
better, bounding the expiry ratio at =~ 35 % in the worst case, while keeping the

Enhancing the Trustworthiness of Service On-Demand Systems 99

0.4 Jo)

-% Sensor Swarm Filtering .

2 0.3 | | =@~ No Filtering e

5 —&— Misra-Gries Filtering e

x 0.2 ,O

(0]

’

g 0.1 L7

= ,
€] ”, N N

0 14 S @

I 0 2 4 6 8 10
Q

£

= 80

2 --0---"9°
= 60 _-0-"

jo)] -

c

] -

220t _ .- -

e - N N A Y — N
g— O 1 1 1 1 J
S 0 2 4 6 8 10
§ Percentage of malevolent users

Fig. 6. Operation under false queries for the item with the lowest Pi/i; ratio (popularity-
to-size).

N
d

ie]
© Sensor Swarm Filtering _-0
> = ® - No Filtering ,O'
Q
3 05 ,’
a,_ ’
/

06— S S o 2
s 0 2 4 6 8 10
Q
£
= 80
: P I
= 60 - =
o 0 O - --0
£ Phg
> 40 r PR
3 " .0
> [g A A
] - A A
3 & A ‘ ‘ ‘
S 2 4 6 8 10
% Percentage of malevolent users

Fig. 7. Flooding the server with queries for the biggest item can yield slightly increased
service times.

average service time constant at ~ 25msec. While the attack is not mitigated,
the system exhibits an increased degree of robustness against this attack type.
Figure4 also accentuates the fact that the nature-inspired, Dendritic attack
detector of SSF is still not well understood [18]. The present simulations can
certainly not preclude that a different mapping of the nature-inspired process
to real-world attributes may perform better. However, such a mapping is not
straightforward and a well-defined process does not exist up to date.

Figures 5, 6 and 7 study the less probable attacks of “Less popular action”,
“Lowest Pi/i; action” and “Lengthiest action” (i.e., biggest item). As shown in

100 C.V. Samaras et al.

Fig. 5, the “Less popular action” attack is easily detected and fully negated by
both MGF and SSF. The fact that a very unpopular item appears multiple
times in the server query queue facilitates attack detection and mitigation. The
performance of the system is not affected much when item popularity and size
are combined into one attack, as shown in Fig. 6. Both MGF and SSF mitigate
the attack, with SSF offering slightly better servicing times. This behavior is
owed to the fact that SSF takes into account the size of the items in the detection
phase. The internal alarm level of SSF increases faster for big items and slower for
small ones. This difference in performance is more discernible in Fig. 7, focusing
on “Biggest item” attacks only. While both SSF and MGF detect the attack, the
filtering of SSF is more aggressive against big items, leading to a gain in service
times. However, the “Lowest Pi/1; item” and “Biggest item” attacks cannot be
considered as effective under presence of either MGF and SSF. Furthermore,
a hacker is more likely to launch “Needed item” and “Random” attacks, since
these are more impactful, as shown in Figs. 3 and 4. Therefore, the +2 msec and
+10msec service time advantage of SSF over the proposed MGF in “Lowest
Pi/1; item” and “Biggest item” is not deemed significant. Coupled with O(N)
complexity, the proposed MGF scheme can offer increased system robustness
under the most significant attack types, with minimal requirements.

6 Conclusion

The present paper proposed a mechanism for defending against vote flooding
attacks in service on-demand systems. The novel scheme was shown to suppress
the effects of such attacks, even when a considerable percentage of the users
are malevolent. Furthermore, the proposed scheme does not compromise the
anonymity of the users and imposes no access control that could degrade the
users’ quality of experience. Combining non-disrupted user-friendliness and non-
obstructed operation even under considerable attacks, the propose scheme can
constitute an attractive add-on for trustworthy on-demand systems.

Acknowledgment. This work was partially supported by EU FP7 project OPTET
(Grant no.317631).

References

1. Aksoy, D., Franklin, M.: RxW: a scheduling approach for large-scale on-demand
data broadcast. IEEE/ACM Trans. Network. 7(6), 846-860 (1999)

2. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic vot-
ing protocols in the applied pi-calculus. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF 2008), pp. 195-209, Pittsburgh, 23-25 June
2008 (2008). http://doi.ieeecomputersociety.org/10.1109/CSF.2008.26

3. Baiardi, F., Falleni, A., Granchi, R., Martinelli, F., Petrocchi, M., Vaccarelli, A.:
Seas, a secure e-voting protocol: design and implementation. Comput. Secur. 24(8),
642652 (2005). http://dx.doi.org/10.1016/j.cose.2005.07.008

http://doi.ieeecomputersociety.org/10.1109/CSF.2008.26
http://dx.doi.org/10.1016/j.cose.2005.07.008

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

Enhancing the Trustworthiness of Service On-Demand Systems 101

Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggrega-
tion with non-permanent participants. Computing. J. 3, 1-20 (2014). do0i:10.1007/
s00607-013-0373-6

Benkaouz, Y., Guerraoui, R., Erradi, M., Huc, F.: A distributed polling with
probabilistic privacy. In: IEEE 32nd Symposium on Reliable Distributed Systems
(SRDS 2013), pp. 41-50, Braga, 1-3 October 2013 (2013). http://dx.doi.org/10.
1109/SRDS.2013.13

Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93-118. Springer, Heidelberg (2001)
Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030-1044 (1985). http://doi.acm.org/
10.1145/4372.4373

Chen, Y., Jan, J., Chen, C.: The design of a secure anonymous internet voting
system. Comput. Secur. 23(4), 330-337 (2004). http://dx.doi.org/10.1016/j.cose.
2004.01.015

Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 354-368,
Oakland, 18-21 May 2008. http://dx.doi.org/10.1109/SP.2008.32

Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89-148 (2013)

Cranor, L.F.; Cytron, R.: Sensus: a security-conscious electronic polling sys-
tem for the internet. In: 30th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-30), pp. 561-570, Maui, 7-10 January 1997. http://doi.
ieeecomputersociety.org/10.1109/HICSS.1997.661700

Degroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118-121 (1974)
Dykeman, H.D., Ammar, M.H., Wong, J.W.: Scheduling algorithms for videotex
systems under broadcast delivery. In: Proceedings of the International Conference
on Communications (ICC 1986), pp. 1847-1851, Toronto, June 1986

Englert, B., Gheissari, R.: Multivalued and deterministic peer-to-peer polling in
social networks with reputation conscious participants. In: 12th IEEE International
Conference on Ubiquitous Computing and Communications (IUCC-2013), pp. 895—
902, Melbourne, July 16-18 2013. http://dx.doi.org/10.1109/TrustCom.2013.109
Fan, C., Sun, W.: An efficient multi-receipt mechanism for uncoercible anony-
mous electronic voting. Math. Comput. Model. 48(9-10), 1611-1627 (2008).
http://dx.doi.org/10.1016/j.mcm.2008.05.039

Frith, D.: E-voting security: hope or hype? Netw. Secur. 2007(11), 14-16 (2007)
Gambs, S., Guerraoui, R., Harkous, H., Huc, F., Kermarrec, A.: Scalable and secure
polling in dynamic distributed networks. In: IEEE 31st Symposium on Reliable
Distributed Systems (SRDS 2012), pp. 181-190, Irvine, 8-11 October 2012. http://
dx.doi.org/10.1109/SRDS.2012.63

Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection
with the dendritic cell algorithm. Inf. Fusion 11(1), 21-34 (2010)

Gritzali, D.: Principles and requirements for a secure e-voting system. Comput.
Secur. 21(6), 539-556 (2002). http://dx.doi.org/10.1016/S0167-4048(02)01014-3
Guerraoui, R., Huguenin, K., Kermarrec, A., Monod, M., Vigfusson, Y.: Decen-
tralized polling with respectable participants. J. Parallel Distrib. Comput. 72(1),
13-26 (2012). http://dx.doi.org/10.1016/j.jpdc.2011.09.003

Hoang, B., Imine, A.: Efficient polling protocol for decentralized social networks.
CoRR abs/1412.7653 (2014). http://arxiv.org/abs/1412.7653

http://dx.doi.org/10.1007/s00607-013-0373-6
http://dx.doi.org/10.1007/s00607-013-0373-6
http://dx.doi.org/10.1109/SRDS.2013.13
http://dx.doi.org/10.1109/SRDS.2013.13
http://doi.acm.org/10.1145/4372.4373
http://doi.acm.org/10.1145/4372.4373
http://dx.doi.org/10.1016/j.cose.2004.01.015
http://dx.doi.org/10.1016/j.cose.2004.01.015
http://dx.doi.org/10.1109/SP.2008.32
http://doi.ieeecomputersociety.org/10.1109/HICSS.1997.661700
http://doi.ieeecomputersociety.org/10.1109/HICSS.1997.661700
http://dx.doi.org/10.1109/TrustCom.2013.109
http://dx.doi.org/10.1016/j.mcm.2008.05.039
http://dx.doi.org/10.1109/SRDS.2012.63
http://dx.doi.org/10.1109/SRDS.2012.63
http://dx.doi.org/10.1016/S0167-4048(02)01014--3
http://dx.doi.org/10.1016/j.jpdc.2011.09.003
http://arxiv.org/abs/1412.7653

102

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

C.V. Samaras et al.

Joaquim, R., Zuquete, A., Ferreira, P.: Revs-a robust electronic voting system.
IADIS Int. J. WWW /Internet 1(2), 47-63 (2003)

Jonker, H., Mauw, S., Pang, J.: Privacy and verifiability in voting sys-
tems: Methods, developments and trends. Comput. Sci. Rev. 10, 1-30 (2013).
http://dx.doi.org/10.1016/j.cosrev.2013.08.002

Li, C., Hwang, M., Liu, C.: An electronic voting protocol with deniable authenti-
cation for mobile ad hoc networks. Comput. Commun. 31(10), 2534-2540 (2008).
http://dx.doi.org/10.1016/j.comcom.2008.03.018

Liaskos, C., Petridou, S., Papadimitriou, G.: Towards realizable, low-cost broad-
cast systems for dynamic environments. IEEE/ACM Trans. Netw. 19(2), 383-392
(2011)

Liaskos, C., Papadimitriou, G., Douligeris, C.: Sensor swarm query filtering: height-
ened attack resilience for broadcast on-demand services. In: IEEE Symposium on
Computers and Communications (ISCC 2013), pp. 000312-000317. IEEE (2013)
Liaskos, C., Tsioliaridou, A., Papadimitriou, G., Nicopolitidis, P.: Minimal wireless
broadcast schedules for multi-objective pursuits. IEEE Transactions on Vehicular
Technology p. preprint (2014)

Malkhi, D., Margo, O., Pavlov, E.: E-voting without cryptography. In: Financial
Cryptography, 6th International Conference (FC 2002), pp. 1-15, Southampton,
11-14 March 2002. http://dx.doi.org/10.1007/3-540-36504-4_1

Meng, B.: A critical review of receipt-freeness and coercion-resistance. Inf. Technol.
J. 8(7), 934-964 (2009)

Meng, B., Li, Z., Qin, J.: A receipt-free coercion-resistant remote internet voting
protocol without physical assumptions through deniable encryption and trapdoor
commitment scheme. J. Softw. 5(9), 942-949 (2010)

Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2),
143-152 (1982)

Pardede, E., Taniar, D., Awan, 1., Al-Sudani, W., Gill, A., Li, C., Wang, J., Liu,
F.: Protection through multimedia CAPTCHAs. In: Proceedings of the 8th Inter-
national Conference on Advances in Mobile Computing and Multimedia (MoMM
2010), p. 63. ACM Press (2010)

Pietronero, L., Tosatti, E., Tosatti, V., Vespignani, A.: Explaining the uneven
distribution of numbers in nature: the laws of Benford and Zipf. Physica A 293(1-
2), 297-304 (2001)

Qadah, G.Z., Taha, R.: Electronic voting systems: Requirements, design,
and implementation. Computer Standards Interfaces 29(3), 376-386 (2007).
http://dx.doi.org/10.1016/j.csi.2006.06.001

Sampigethaya, K., Poovendran, R.: A framework and taxonomy for com-
parison of electronic voting schemes. Comput. Secur. 25(2), 137-153 (2006).
http://dx.doi.org/10.1016/j.cose.2005.11.003

Sharaf, M.A., Chrysanthis, P.: On-Demand Broadcast: new Challenges and
Scheduling Algorithms. In: Proceedings of the 1st Hellenic Conference on the Man-
agement of Data (2002)

Sieka, B., Kshemkalyani, A.D., Singhal, M.: On the security of polling protocols in
peer-to-peer systems. In: 4th International Conference on Peer-to-Peer Computing
(P2P 2004), pp. 36-44, Zurich, 15-17 August 2004. http://doi.ieeecomputersociety.
org/10.1109/PTP.2004.1334929

Smart, M., Ritter, E.: True trustworthy elections: remote electronic voting using
trusted computing. In: Calero, J.M.A., Yang, L.T., Marmol, F.G., Garcia Villalba,
L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 187—202. Springer,
Heidelberg (2011)

http://dx.doi.org/10.1016/j.cosrev.2013.08.002
http://dx.doi.org/10.1016/j.comcom.2008.03.018
http://dx.doi.org/10.1007/3-540-36504-4_1
http://dx.doi.org/10.1016/j.csi.2006.06.001
http://dx.doi.org/10.1016/j.cose.2005.11.003
http://doi.ieeecomputersociety.org/10.1109/PTP.2004.1334929
http://doi.ieeecomputersociety.org/10.1109/PTP.2004.1334929

39.

40.

41.

Enhancing the Trustworthiness of Service On-Demand Systems 103

Tsioliaridou, A., Zhang, C., Liaskos, C.: Fast and fair handling of multimedia
captcha flows. International Journal of Interactive Mobile Technologies (2015).
(To appear)

XJ Technologies: The AnyLogic Simulator (2013). http://www.xjtek.com/
anylogic/

Zwierko, A., Kotulski, Z.: A light-weight e-voting system with distrib-
uted trust. Electr. Notes Theor. Comput. Sci. 168, 109-126 (2007).
http://dx.doi.org/10.1016/j.entcs.2006.12.004

http://www.xjtek.com/anylogic/
http://www.xjtek.com/anylogic/
http://dx.doi.org/10.1016/j.entcs.2006.12.004

	Enhancing the Trustworthiness of Service On-Demand Systems via Smart Vote Filtering
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Misra-Gries-Based Query Filtering
	5 Simulations
	6 Conclusion
	References

