
Diana Perez-Marin
Universidad Rey Juan Carlos, Spain

Ismael Pascual-Nieto
Universidad Autónoma de Madrid, Spain

Conversational Agents
and Natural Language
Interaction:
Techniques and Effective
Practices

Conversational agents and natural language interaction: techniques and
effective practices / Diana Perez-Marin and Ismael Pascual-Nieto, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book is a reference guide for researchers entering the
promising field of conversational agents, providing an introduction to
fundamental concepts in the field, collecting experiences of researchers
working on conversational agents, and reviewing techniques for the design and
application of conversational agents”-- Provided by publisher.
 ISBN 978-1-60960-617-6 (hardcover) -- ISBN 978-1-60960-618-3 (ebook) 1.
Natural language processing (Computer science) 2. Computer-assisted
instruction. 3. Discourse analysis--Data processing. 4. Speech therapy--Data
processing. 5. Intelligent agents (Computer software) I. Perez-Marin, Diana,
1980- II. Pascual-Nieto, Ismael, 1981-
 QA76.9.N38C674 2011
 006.3--dc22
 2011001310

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Hannah Abelbeck
Production Editor: Sean Woznicki
Typesetters: Mike Brehm, Natalie Pronio, Milan Vracarich Jr., Deanna Jo Zombro
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

335

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

DOI: 10.4018/978-1-60960-617-6.ch015

INTRODUCTION

Automated Voice Agents are systems capable of
communicating with users by both understanding
and producing speech within a specific domain.

They engage in humanlike spoken dialogues, in
order to route telephone calls, give traffic informa-
tion, book flights, solve technical problems and
provide access to educational material among
others.

Pepi Stavropoulou
University of Athens, Greece

Dimitris Spiliotopoulos
University of Athens, Greece

Georgios Kouroupetroglou
University of Athens, Greece

Design and Development of
an Automated Voice Agent:

Theory and Practice Brought Together

ABSTRACT

Sophisticated, commercially deployed spoken dialogue systems capable of engaging in more natural
human-machine conversation have increased in number over the past years. Besides employing advanced
interpretation and dialogue management technologies, the success of such systems greatly depends on
effective design and development methodology. There is, actually, a widely acknowledged, fundamen-
tally reciprocal relationship between technologies used and design choices. In this line of thought, this
chapter constitutes a more practical approach to spoken dialogue system development, comparing design
methods and implementation tools highly suited for industry oriented spoken dialogue systems, and com-
menting on their interdependencies, in order to facilitate the developer’s choice of the optimal tools and
methodologies. The latter are presented and assessed in the light of AVA, a real-life Automated Voice
Agent that performs call routing and customer service tasks, employing advanced stochastic techniques
for interpretation and allowing for free form user input and less rigid dialogue structure.

336

Design and Development of an Automated Voice Agent

Depending on their design, the speech under-
standing and dialogue management technology
involved, they may be of two basic types:

• Directed Dialog Systems: ranging from
finite state-based to frame-based systems
(McTear, 2004). The former systems are
very simple and inflexible menu-driven in-
terfaces, where the dialogue flow is static,
specified in advance, no deviations from
that flow are allowed, and only a limited
number of words and phrases provided by
the user can be understood. The latter sys-
tems are more advanced interfaces, where
the interaction is not completely predeter-
mined and a more elaborate vocabulary
can be handled. While both types of sys-
tems are primarily system-directed, frame-
based systems allow for a modest level of
mixed-initiative by handling over-specifi-
cation in user’s input; that is the user can
provide more items of information than
those requested by the system at each dia-
logue turn.

• Open-ended natural language conversa-
tional systems: mixed-initiative systems,
where both system and user can take con-
trol of the dialogue introducing topics,
changing goals, requesting clarifications,
establishing common ground. Equipped
with sophisticated speech and language
processing modules, they can handle long,
complex and variable user input in an at-
tempt to approximate natural human-hu-
man interaction as close as possible.

The two types of systems to a significant
extent reflect the differences in trends and direc-
tions followed by the spoken dialogue industry
compared to spoken dialogue research during the
last decades. As commercial dialogue systems
aim primarily at usability and task completion
(Pieraccini & Huerta, 2008), focus was placed
on ways to restrict users’ input, in order to amend

for speech technology limitations and reach in-
dustrial standards for useful applications. As a
result, industry opted for more directed dialogue
systems, which are the most commonly used on
the market today.

Furthermore, the need for cost reduction, ease
of development and maintenance has led to the
development of reusable dialogue components and
integration platforms promoting modularity and
interoperability. Accordingly, VoiceXML (Mc-
Glashan et al., 2004; Larson, 2002) has become
an industry standard for building voice applica-
tions, which exploits the existing and universally
accepted web infrastructures eliminating the need
for specific application protocol interfaces (APIs)
designated to speech technology integration.
Based on the Form Interpretation Algorithm it
incorporates a frame-based architecture, providing
an industry-feasible trade-off between naturalness
and robustness.

Research, on the other hand, aims primarily
at naturalness and freedom of communication
(Pieraccini & Huerta, 2008). In an attempt to
handle almost unrestricted user input and al-
low for a fully mixed initiative, conversational
interface, focus has been on dialogue manager
architectures exploiting inference and planning
as part of a truly conversational agent. Speech act
interpretation (Allen, 1995, Chapter 17; Cohen &
Perrault, 1979; Core & Allen, 1997; Allen et al.,
2007) and conversational games (Kowtko et al.,
1993; Pulman, 2002), discourse structure (Grosz
& Sidner, 1986; Stent et al., 1999; Fischer et al.,
1994) and prosody manipulation (Hirschberg et
al., 1995; Noth et al., 2002) are only some of the
topics in an ongoing research for building natural
language interfaces.

Furthermore, accessibility issues have gained
attention, being important not only for the visual
impaired (Freitas & Kouroupetroglou, 2008) but
also to people with various disabilities (Fellbaum
& Kouroupetroglou, 2008). In particular, spoken
dialogue systems are considered as key technologi-
cal factors for the universal accessibility strategies

337

Design and Development of an Automated Voice Agent

of – for example – public terminals, information
kiosks and Automated Teller Machines (ATMs)
(Kouroupetroglou, 2009).

Nevertheless, the emerging need to support
complex, demanding domain applications such as
education, help desk or customer care, along with
the evolution and level of maturity accomplished
by the current speech and natural language un-
derstanding technology have led to a significant
number of commercially developed and deployed
mixed initiative systems and the introduction of
more free style automated voice agents, indicat-
ing some level of convergence between the two
fields, research and industry.

Building on practices and experiences from
developing such a system, this chapter comprises
a more pragmatic approach to Automated Voice
Agents, focusing on practical spoken dialogue
systems, presenting techniques, tools and re-
sources for effective design and implementation,
assessing them in the light of a real life customer
care and call routing application, commenting on
best practices and suggesting ways to best utilize
these practices.

We follow the typical lifecycle of an automated
voice agent and focus on the requirements analysis
and design phase, as well as the development of
the Automatic Speech Recognition (ASR) and
Natural Language Understanding (NLU) modules.

In the following sections we first give a brief
overview of previous related work. Next we
present the main features and architecture of
an automated voice agent, before going on to
describe AVA, the real-life application at hand.
Illustration of the main steps in an agent’s lifecycle
follows, and design and implementation phases
are subsequently discussed in detail. Final section
summarizes key concepts throughout the process.

RELATED WORK

The field of spoken dialogue systems is one of the
fastest growing areas over the last decades. With

regards to field textbooks, Cohen et al. (2004) is
a thorough, well organized presentation of the
complete spoken dialogue interface development
process and methodology based on extensive
real word experience. A sample application is
presented as means to observe how development
and design principles can be applied in practice.
Harris (2005) is another comprehensive guide to
spoken dialogue system development grounded
on an in depth grasp of relevant literature, and
focusing particularly on development process and
design. Hempel (2008) is a collection of articles
on system quality and usability issues with refer-
ence to multimodal systems as well.

Weinschenk & Barker (2000) and Balentine &
Morgan (1999) provide a set of practical design
principles and guidelines for building a Voice User
Interface (VUI). Pitt & Edwards (2003) is another
practical approach focusing on menu and prompt
construction applying the proposed principles
on real life applications involving road traffic
information and a voice mail system.

McTear (2004) is an introduction to techni-
cal (among other) aspects of spoken dialogue
systems, illustrating development of applications
with particular software and toolkits. Huang et
al. (2001) is a standard guide to spoken language
system technology (including signal processing,
speech recognition and synthesis techniques as
well as Natural Language Understanding (NLU)
algorithms and dialogue management strategies).
Finally, Jurafsky & Martin (2000, Chapter 19) in-
troduce algorithms and architectures for dialogue
managers in conversational agents.

There is a significant number of practical (Dahl,
2004) and more advanced (Pellom et al., 2001;
Allen et al., 1995, 1996, 2001; Wahlster, 2000;
Sidner, 2004, among others) system descriptions.
Here reference will be made to call routing and
customer care related spoken dialogue applica-
tions. Riccardi et al. (1997) and Gorin et al. (1997)
describe the Automatic Speech Recognition (ASR)
and Understanding components of the HMIHY
call routing system, which utilize phrase based

338

Design and Development of an Automated Voice Agent

language modeling and a classifier that uses salient
text fragments as features in order to associate
user utterances to predetermined call types.

Walker et al. (2002) report on automatically
predicting problems in human-machine dialogues
for improved error recovery also within the
HMIHY system. Chu-Carroll & Carpenter (1999),
Garfield & Wermter (2002, 2006) and Zitouni et
al. (2003) also place attention on advanced NLU
techniques – such as vector based classifiers and
recurrent neural networks – for such systems. Lee
& Chang (2002) describe an operator assisted call
router that integrates a generic ASR module with
an information retrieval module based on keyword
extraction from existing company documentation
with descriptions of routing destinations (i.e.
departments), thus eliminating the need for col-
lecting and transcribing actual call recordings.

Williams & Witt (2004) compare menu driven
directed dialogue strategies to open ended, free
form “how may I help you” strategies for use in
automated call routing. Finally, Gupta et al. (2006)
touch upon subjects such as system scalability
and minimization of development effort describ-
ing the NLU component of VoiceTone, a system
that provides automated customer care services
in addition to call routing.

In the vein of theorized practice, this chapter
presents a real life call routing and customer care

information provision application focusing on
design, ASR and NLU implementation and the
reciprocal relationship among the three, building
on a more general, theoretical perspective.

THE AUTOMATED VOICE AGENT

As mentioned in the introductory section, Au-
tomated Voice Agents are programs capable of
communicating with users by both understanding
and producing speech within a specific domain.
Figure 1 illustrates the Automated Voice Agent
architecture. The Automatic Speech Recognition
(ASR) component converts acoustic user input
into text, and passes the text string to the Natural
Language Understanding (NLU) component for
semantic interpretation.

In addition, a Dual-Tone Multi-Frequency
(DTMF) recognizer may be used to allow for
DTMF input as well. Next, the Dialogue Man-
ager (DM) evaluates and/or disambiguates the
semantic information from the NLU module based
on processes such as dialogue history and context
interpretation. Depending on input evaluation the
DM plans and proceeds to execute certain dialogue
actions such as database queries or system prompt
formulation. For prompt formulation, the DM
output is converted to a well formed written ut-

Figure 1. Automatic voice agent main component layout

339

Design and Development of an Automated Voice Agent

terance by the Natural Language Generation
(NLG) module, and then the Text to Speech (TtS)
Synthesizer converts the written utterance to
speech. In most commercial spoken dialogue
systems pre-recorded prompts are used instead.

The main feature of an agent is personification
(Harris, 2005). Personification refers to a primi-
tive, inherent human disposition to assign human
attributes to non human entities, or in this case, a
personality to the automated voice agent. There
are certain parameters, design and implementation
choices, that affect the personality ascribed to the
agent. In particular:

• The kind of language used, namely the
vocabulary, syntax, prosody and style, the
agent’s gender or dialect may cause the
agent to appear calm, pleasant, helpful,
interesting or encouraging. For example,
simple syntax (e.g. use of simple coordina-
tion structures rather than subordination)
and avoidance of jargon may cause the
agent to appear more informal and helpful.
Variation in the wording of prompts and
tone may make the agent sound more inter-
esting. Use of prosody to convey emotion
increases the level of perceived conversa-
tion engagement.

• The range of functions, the capabilities and
limitations of the agent, the dialogue ini-
tiative handling, the interaction style, the
choice on grounding and error recovery
strategies may cause the agent to appear
competent, trustworthy, dependable, cred-
ible, co-operative, intelligent, sensible,
helpful or knowledgeable. For example,
mixed-initiative strategies are usually
signs of intelligent behavior. In contrast,
an agent that sequentially asks for pieces
of information already given just sounds
brainless. Changing dialogue strategies
(e.g. backing off to a more conservative di-
rected dialogue strategy when the dialogue
is problematic) may be considered a sign
of co-operative and helpful behavior.

Given the reciprocal relationship between de-
sign and available technology, a successful voice
agent, one that sounds smart, pleasant and helpful,
depends both on effective design methodologies
and adequate speech and language technology
tools. At the same time business requirements
should be met and cost/time constraints should
be taken into consideration. Figure 2 illustrates
these interactions.

Figure 2. Design considerations and interactions in building an automate voice agent

340

Design and Development of an Automated Voice Agent

In the next sections we present AVA, an Au-
tomated Voice Agent for a customer care system,
with the aim to address the following question:
how do our tools and techniques affect design,
implementation and evaluation choices, and how
can we make the best choice possible?

AVA: AN AUTOMATED VOICE
AGENT FOR CUSTOMER CARE

AVA is an automated voice agent built for a Cus-
tomer Care call centre of a Mobile Telephony
company. She performs two major tasks: a) ap-
propriate routing of the client’s call to one of 17
dedicated queues, and b) database information
retrieval for speech-based automated self-service
modules. For both tasks she needs to identify and
correctly categorize the caller’s request as one of
the approximately 100 services and respective
thematic categories provided by the Customer
Care department.

In addition, AVA displays the following key
features (among others): a) recognition and un-
derstanding of free style user input. If there is
under-specification and ambiguity in the user’s
input, AVA should formulate an appropriate ques-
tion, in order to determine how the call should be
handled, b) support of mixed dialogue initiative
in the following sense: on one hand AVA should
be able to handle over-specification; on the other
hand, the callers should be able to shift goal at al-
most any time during the interaction. For example,
if the users have already chosen a particular self
service, and within the self service sub-dialogue
they decide that they want a different service after
all, AVA should be able to understand this new
request and handle the call accordingly.

As is often the case with automated voice
agents, AVA replaces an existing DTMF system.
A DTMF system is static and menu driven and so
providing coverage for a complex domain such
as customer care eventually results in a large and
complicated menu hierarchy. Consequently, the

caller is forced to spend precious time navigating
through various levels of this hierarchy before fi-
nally being transferred to a human agent; efficiency
decreases, while user dissatisfaction increases.

Furthermore, even with an overcomplicated
menu hierarchy, no exact mapping is guaranteed
between the user’s request and the menu options
offered. The result is an increase in the number
of hang ups and misroutings. As AVA replaces
the old DTMF system, there is no longer need for
dysfunctional, complex menus, a lot more services
can be handled and the interaction becomes more
natural, efficient and effective.

Spiliotopoulos et al. (2009) compare DTMF
systems to spoken language interfaces performing
usability testing on a real life paradigm involving
both types of systems, showing a great increase
in user satisfaction and system efficiency when
using a spoken dialogue interface. In particular,
the average call duration was 25 and 44 seconds
for the spoken dialogue and the DTMF system
respectively, while user satisfaction score was 9
percentage points higher for the former compared
to the latter.

As is, AVA poses three major challenges with
regards to design, implementation and mainte-
nance considerations respectively. The first one
involves building on the existing user’s mental
model and breaking down the customer care do-
main into a service hierarchy that reflects the user’s
point of view. A second interdependent challenge
involves the automatic recognition of the user
input to open-ended questions covering a large
range of responses, and mapping it to one or more
services. The latter requires, among other things,
a large set of typical caller utterances for train-
ing the statistical models for speech recognition
and interpretation. The third challenge involves
minimizing the cost and need for support in a
constantly changing domain. These challenges are
analysed and addressed in the following sections.

341

Design and Development of an Automated Voice Agent

THE AUTOMATED VOICE
AGENT’S LIFECYCLE

Figure 3 shows the basic steps in the process of
building an automated voice agent. The adapted
phases from Cohen et al. (2004) are the following:

• Design phase, which is further divided into
a) the requirements analysis and high level
design, where the basic system functional-
ity is analysed and defined and key design
decisions are made, and b) detailed design,
which results in a complete, detailed speci-
fication of the dialogue.

• Implementation phase during which the
system components – the Automated
Speech Recognition (ASR) Module, the
Natural Language Understanding (NLU)
Module, the Dialog Manager (DM), the
Language Generation Module and the Text
to Speech Synthesizer (TtS) – are devel-
oped. As an alternative to having a genera-
tion module and a TtS synthesizer, static
prompts may be pre-recorded and used.
Integration with third party software sys-
tems is completed. At the end of the im-

plementation phase there should be a fully
integrated, working prototype.

• Evaluation and Tuning phase. Final usabil-
ity tests are performed with the (nearly)
finished product aiming primarily at ap-
plication fine tuning, since important de-
sign choices should have already been
made and evaluated during the previous
steps. Pilot phase is a significant part of
the whole tuning process. It is because of
the abundance of in service realistic data
available for training, testing and tuning
purposes, when the market-ready system is
released to real users.

• Deployment: the final production system is
released to the entire user population.

• Maintenance and quality assurance
monitoring.

As Kouroupetroglou & Spiliotopoulos (2009)
note, testing is an important, inherent part of all
phases rather than the evaluation phase alone
(for example it can be in the form of usability
testing or usability inspection during the design
phase, unit testing and usability testing during the
implementation phase (cf. following sections)),

Figure 3. Testing methodology to develop automated voice agents

342

Design and Development of an Automated Voice Agent

essentially turning the process of building an
automated voice agent into an iterative design,
(re)test, redesign and (re)implement procedure.

Therefore, even though the steps are depicted
in the sequence they principally apply (cf. Figure
3), in practice there is no clear cut line distinguish-
ing among phases, which typically blur into each
other. Figure 3 further illustrates the main tests
available at each phase, analysed in the follow-
ing sections. For a more detailed description of
how each test applies within the automated voice
agent development lifecycle readers may refer to
Cohen et al. (2004).

DESIGN PHASE

First in an automated voice agent’s lifecycle
come the requirements analysis and the design
phase. During these phases the developer needs to
analyze the users’ characteristics (demographics,
linguistic characteristics, domain and task knowl-
edge, frequency of use, experience with similar
systems), the business goals (motivation behind
the development of such a system, company im-
age, competition, time and cost constraints) and
the application domain (tasks and features, current
and desired workflow, technical environment),
in order to make appropriate design choices and
proceed with the complete dialogue specification.
Based on the analysis the developer has to decide
upon high level features, such as initiative and
grammar type, down to prompts, dialogue states
and slots. At the end of the design phase a com-
plete description of the call flow and all prompts
played by the system should be available (Cohen
et al., 2004).

A key for effective design is user-centered
design (Norman & Draper, 1986; Gould & Lewis,
1985). User expectations, attitudes and behaviour
should be accommodated rather than constrained.
In this view, an important aspect of analysis feed-
ing directly into design is the understanding of
the “natural” mental model that first time users

bring to the interaction, their existing – and pos-
sibly expected – view of the interaction, a model
of how things have worked so far.

The success of an interface greatly depends on
the correspondence between this “natural” mental
model and the conceptual (Weinschenk & Barker,
2000) or design model (Norman, 1988); that is
the proposed model afforded by the design of the
interface. Ideally, a system should build on and
adapt to the users’ prior knowledge and experi-
ence, in order to create a more familiar, intuitive,
easier to learn and use interface.

For voice agents in particular, the latter is
tightly connected to the kind of language – vo-
cabulary-wise and syntax-wise – understood and
introduced by the agent. Domain specific spoken
dialogue studies are therefore very important and
presuppose the existence of appropriate language
resources. On a final note, as speech recognition
and understanding modules typically require
domain specific corpora for training purposes
(cf. “Implementation Phase: Speech Recognition
and Understanding Modules” section), many of
these resources can be shared between design and
implementation teams.

The most common techniques for designing
voice agents are presented based on the afore-
mentioned considerations and according to the
phase of the development cycle in which they
are used. The techniques are evaluated with the
following parameters: a) ease of application, i.e.
the feasibility of these techniques in light of strict
industry time frames and cost constraints, b) their
contribution to understanding the mental model
and interaction patterns, c) their usefulness for
determining the vocabulary and other linguistic
constructions and d) their appropriateness to serve
as ASR and NLU resources.

Gathering information from company
personnel and domain experts. Starting early in
the agent’s lifecycle it comprises a valuable tool
throughout the building process, as it provides
insights in the business goals and the applica-
tion in general. Meetings with human agents in

343

Design and Development of an Automated Voice Agent

particular can prove to be very informative with
regards to identifying typical usage, terminol-
ogy, confusions and “risky” or complicated steps
during the interaction. However, they may lack
objectivity, providing invalid information, blurring
understanding of actual user behaviour.

Examination of available documentation
(e.g. marketing materials, statistics about use)
and/or other in-domain applications (e.g. web-
site, DTMF system to be replaced) can provide
information on functionality and terminology.
However, there are two very important points
of caution involved. First of all, company docu-
mentation often reflects a business view of the
application domain. Migrating this business view
into the interface often results in bad performance,
as business and user scope do not coincide and
thus user expectations are rarely met. Secondly,
the audio modality differs from visual or other
modalities. The transient, ephemeral nature of
speech along with human cognitive limitations
place constraints on the speech output and the
application structure in general.

Balentine & Morgan (1999), among others,
recommend presenting no more than five infor-
mation units at one time opting for the lowest
possible number. Graphic User Interfaces (GUIs)
on the other hand exploit vision and space, and
can present a large amount of information that
can be easily and quickly processed by the user.
Therefore, a direct translation of a GUI into a
Speech User Interface will most likely result into
unfriendly, unusable applications.

Similarly, DTMF modality differs from speech
in terms of user psychology, timing, menu struc-
tures and selection methods (Balentine & Mor-
gan, 1999). Co-operative, natural conversation
is simply not menu navigation. In short, when
transferring knowledge and experience from one
modality to another, one should be careful to filter
out distinct psychological and design principles
that refer to or are particularly important to each
modality alone.

While both the above mentioned techniques
are important for gaining a basic understanding
of the business and the application context, they
cannot be a substitute for direct contact with users.

User interviews and observation studies
allow for such direct user contact, comprising a
significant aspect of user-centered design. Inter-
viewing users can provide insights on the how,
when and whys of the task. Nevertheless, as users
are asked to remember and comment on events
and processes “that may normally be performed
without a lot of conscious thought” (Weinschenk
& Barker, 2000), their input may be inaccurate
and imprecise.

Also, care should be taken when forming the
interview questions, so as not to bias the inter-
viewees’ answers causing them to deviate from
their natural language and usage patterns. These
concerns do not apply in the case of observation
studies, whereas one can directly observe real us-
ers performing the task and gain insight into their
interaction patterns and language use. On site field
studies may be less time – and hence cost – effec-
tive, but can provide an opportunity to ask human
agents specific questions. For telephone-based
applications, on the other hand, there may be a –
time and cost saving – abundance of records of
calls to live agents immediately available.

Analysis of actual users’ calls to human
agents is already considered to be an important re-
source for effective design (McTear, 2004; Cohen
et al., 2004), as it provides significant information
regarding the vocabulary used, the nature of the
interaction and the mental model of the task in
general. Most importantly, in contrast to language
resources obtained from usability testing, these
calls are collected from real users truly engaged
in performing realistic tasks.

Alternatively, the next opportunity for collect-
ing utterances from real users is during the pilot
phase, which comes later in the development
process, and so involves the risk of costly changes
due to overlooked early design shortcomings.
Furthermore, call records can be transcribed and

344

Design and Development of an Automated Voice Agent

used as training corpus for stochastic models for
the ASR and NLU modules.

Since the necessary amount of corpus is al-
ready available at the beginning of the develop-
ment lifecycle, there is no need to spend valuable
time for the collection of training corpora during
implementation. Moreover, having adequate
resources for ASR and NLU early in the devel-
opment process enables the obtainment of more
reliable results during evaluative usability testing,
as low recognition and interpretation success rate
considerably affect the user experience (Kamm &
Walker, 1997), and interfere with the evaluation
of the dialogue structure per se.

On the other hand, human-human dialogues
are intrinsically less restricted in nature compared
to human-machine dialogues, and associated with
diverse caller behaviour. In a study comparing a
corpus collected from human-human dialogues
to a corpus collected from human-machine dia-
logues significant differences were found in the
vocabulary used, the length and complexity of
the utterances as well as the performance of the
statistical language models for ASR (Stavropoulou
et al., 2011).

Human-human utterances were approximately
three times longer (45% larger corpus vocabulary
size), more complicated, and the language model
trained on them performed worse (9-14 and 11-14
percentage points increase in word error rate and
concept error rate respectively). In conclusion,
whilst developers may observe actual users, they
cannot observe actual user-system interaction. In
fact one can never be absolutely certain what the
real users’ reaction and perception of the system
will be.

At least that is what previous experience has
shown us when building a system similar to AVA
with regards to complexity, but for – familiar with
the domain – telecom shop representatives only.
After launch we discovered that the company
employees insisted on using specific keywords
and phrases essentially reproducing the limited
functionality of the DTMF system that was re-

placed, rendering the use of elaborate vocabulary,
grammars and dialogue structure redundant.

All the techniques presented so far aid early
design choices and are relatively cost free. In this
regard, they form an indispensable part of require-
ments specifications and high-level design. Next,
techniques are presented that require the existence
of a basic design skeleton at least, and as such they
are used to evaluate high level design choices and
guide more detailed design.

Wizard of Oz (WOZ) testing (Fraser & Gil-
bret, 1991) is one of the most prevalent techniques
in the design and early development stages. It is
the first time the system is presented to end users,
and developers have a chance to observe user –
system interaction, obtaining invaluable, hands-on
information on attitude peculiarities and problems
faced with regards to the specific interface.

In a WOZ study, the system is actually a mock
up (prototype simulation), and a human acts as the
system. The main advantage of the WOZ method
lies in the ability to test early, without a working
system. Therefore, updates based on feedback are
easier, and early detection of design shortcomings
that would be costly to fix later is possible.

Furthermore, the dialogues collected can be
used as initial training corpus during the implemen-
tation of the ASR and NLU modules. On the other
hand, the WOZ method faces the disadvantages
of end user testing in general. First of all, test
participants are not motivated in the same way
as real users are, and are often not representative
of the end user population.

Earlier studies (Turunen et al., 2006; Ai et
al., 2007) have shown that there are differences
between usability testing and actual use condi-
tions; main differences lie in the use of barge-in,
explicit help requests, significant silence timeouts,
speech recognizer rejection rate, use of touchtone,
speech rate, utterance length and dialog duration.

Furthermore, as test participants are asked
to perform specific tasks, the language used to
describe these tasks inevitably influences the
participants’ choice of vocabulary and utter-

345

Design and Development of an Automated Voice Agent

ance structure, undermining the usefulness and
reliability of elicited discourse patterns (Harris,
2005). That is especially true in the case of WOZ
testing, which usually takes place before final
prompt design and specification, and so users may
take cues from prompts that will be replaced in
the final system.

The realistic aspect is further compromised,
as it is difficult for the wizard to simulate speech
recognition and interpretation errors. In addition,
setting up a WOZ experiment requires tools that
can be costly to develop (Weinschenk & Barker,
2000; Jankelovich interview).

Finally, with regards to the utility of the corpus
collected for the development of stochastic rec-
ognition and interpretation models, the following
should be taken into account: given that a typical
test session involves 10-15 participants (Cohen et
al., 2004), besides lacking the realistic aspect of
actual system use, the number of collected dialogs
is usually very limited.

Usability testing with working systems. Us-
ability testing is “a process that employs people
as testing participants who are representative
of the target audience to evaluate the degree to
which a product meets specific usability criteria”
(Lauesen, 2005). The term “working systems”
does not necessarily mean systems that contain
the entire intended functionality of the produc-
tion system. On the contrary, by initially testing
the usability of limited functionality systems and
gradually adding more modules and functions,
user involvement may take place early in the
implementation phase and become an indispens-
able part of an iterative testing, design and build
process, probing and refining design choices at
each iteration (Kouroupetroglou & Spiliotopoulos,
2009; Spiliotopoulos & Kouroupetroglou, 2010).

Evaluation usability tests using a close-to-
market, fully integrated system can then be
performed at the end (or near the end) of the
implementation cycle, primarily for fine tuning
purposes. Optimally, major problems in design
should have already been identified, as addressing

them at that point is usually a difficult and costly
procedure. It should be noted, though, that under
fast paced conditions that are typically the case in
industry, often dealing with budget constraints as
well, the high cost of conducting usability tests
in an iterative manner throughout the product’s
lifecycle is sometimes prohibitive.

A good compromise is to design and test the
riskiest parts early in the process. Regarding
the quality of the collected resources, the same
shortcomings apply as with WOZ testing, only,
in this case, tests benefit from the realistic aspect
of actual system use. All in all, usability testing
should be an indispensable part of the develop-
ment process, highly important for conciliating
business, developer and user view, validating
design decisions, identifying problems early in
the process, when it is easier to address them, and
preventing the release of embarrassing, unusable
systems (Galitz, 2007).

Finally, usability inspection methods, such as
heuristic evaluation (usability experts examine
whether usability principles are met) or pluralistic
walkthroughs (group meetings, where stakehold-
ers go through dialogue scenarios) are an impor-
tant, cost and time effective tool that can be easily
utilized throughout the development lifecycle.

Accordingly, Rubin & Chisnell (2008) note:
“In some cases it is more effective both in terms
of cost, time, and accuracy to conduct an expert
or heuristic evaluation of a product rather than
test it. This is especially true in the early stages
of a product when gross violations of usability
principles abound. It is simply unnecessary to
bring in many participants to reveal the obvious”.

There are a number of other usability inspec-
tion methods (e.g. heuristic estimation, feature and
consistency inspection); heuristic evaluation is
considered to be the most common and beneficial
one (Nielsen, 1995). Nevertheless, even the latter
can only be complementary to other user-centric
techniques, as it often fails to identify a significant
proportion of problems (roughly 50%) that real
users encounter (Lauesen, 2005). For a detailed

346

Design and Development of an Automated Voice Agent

analysis of usability inspection methods readers
may refer to Nielsen & Mack (1994).

DESIGNING AVA

For understanding AVA and deciding upon key
design features, first we met with technical per-
sonnel, explored the existing touchtone system,
the company’s website and other available docu-
mentation. Customer care personnel were able
to further provide us with statistics of use based
on a detailed segmentation of the customer care
domain; all services offered by the department
had already been defined and grouped into higher
level services in a hierarchical fashion, essentially
providing us with a thorough analysis of the ap-
plication functionality.

Intuitively, though, this analysis seemed to
reflect a business rather than a user view of the
domain. Our intuition was corroborated by input
on keywords and terminology provided by hu-
man agents, which substantially differed from the
jargon in the company’s documentation.

So, in order to gain a better understanding
of users’ view and attitude, we organized a field
study, where we observed live agents performing
the task. Unfortunately, monitoring real time calls
proved rather ineffective time wise, as within a
call we could not skip tasks that were out of the
application domain.

Still, we had a chance to get the “look and feel”
of the task and interview live agents. Luckily, the
application being telephone based, we were given
access to existing call records. Call record analysis
proved to be a much more effective and useful
technique. During the analysis we observed high
variation and complexity in users’ input in terms
of vocabulary and syntax that suggested using
more robust methods for interpretation such as
NLU classifiers rather than hand crafted NLU
grammars. However, building on previous experi-
ence and given the inherent differences between
human-human and human-machine dialogues,

it was necessary to examine actual user-system
interaction.

To achieve that at such an early stage in AVA’s
lifecycle a mock up was developed and “exposed”
to real users. The purpose of the mock up was
twofold: to aid design and collect high quality
corpus for implementation. Only the first – and
riskiest – step of the dialogue was simulated, in
which the callers ask for the particular service
they are interested in.

Following a short message introducing callers
to the automated service, a “How may I help you”
prompt was played to them and after responding
they were directly routed to the existing DTMF
system. No actual speech recognition or interpre-
tation was attempted and only one no-input event
was allowed. Upon no input a help prompt was
played with example utterances and the initial
prompt was then repeated.

In designing the mock up application, it was
important to have already formulated a basic idea
of how the production system would work in terms
of dialogue structure and ASR grammar type at
least. Both parameters affect the wording of the
prompts, and taking into account the observed
correlation between prompt wording and the
caller’s answer, it was important to use prompts
as similar as possible to the prompts used in the
production system.

Analysis of the simulated part of the dialogue
had already indicated that due to the application’s
complexity a “How may I help you” open end ques-
tion was the safest choice. Also, care was taken,
so that the examples provided in the case of no
input were representative of the most frequently
asked for services, and avoided confusing jargon.
In short, “proactive”, strong emphasis on design
of prompts ensured the validity and utility of the
collected corpus.

Due to its simplicity the mock-up was easy
and fast to develop and the heavy call load of
the customer care call centre made it possible to
collect the necessary amount of utterances within
a week. The collected corpus served as the basis

347

Design and Development of an Automated Voice Agent

for user centered design, and helped us analyse
the users’ view of the domain, elicit users’ natural
discourse patterns, and observe realistic first time
user reaction to the introduction of AVA.

To be more specific, corpus analysis revealed
significant user deviations from business language
as well as the service domain segmentation de-
picted in company’s documentation. On one hand
users tended to be rather vague in their requests
actually forming super-categories that required
disambiguating. Utterances such as “barring” or
“activation” were classified as super categories in
need of disambiguation, in order to decide upon
a unique routing destination.

Such disambiguation sub-dialogues comprise
an important part of AVA that could have not been
effectively designed and implemented without
early access to user-system dialogues. On the
other hand, there were many requests for speaking
to agents or being transferred to – non existing
sometimes – company departments. Such requests
do not typically come up in the interaction between
clients and human agents.

Furthermore, with regards to user’s discourse,
utterance structure was far simpler compared to
the human-human dialogues previously analysed,
rendering the use of hand crafted robust NLU
grammars a viable solution. In fact, a significant
number of simple one word utterances came up.
Still, for some particular services and in the case
of a small number of users, syntax and wording
displayed higher variation and complexity. As a
result we decided to proceed with our initial choice
favouring the use of machine learning techniques
for the interpretation part of AVA as well. Given
that frequency of use was not particularly high for
the application and there would always be walk-
up-and-use users, we wanted to accommodate
these users too rather than force them to adjust
to technology limitations.

Finally, we were able to collect a number of
different reactions falling under the “volunteer”
or “victim” distinction (Attwater et al., 2000),
that is a user expecting an automated agent or a

human agent respectively. Based on our observa-
tions we managed to design a set of help prompts
in response to such “victim” caller’s reactions.
Our observations further served as arguments
corroborating the need for notifying customers
of the new application beforehand, for example
via Short Messaging Service (SMS).

In conclusion, the mock up application was an
indispensable part of AVA’s lifecycle, providing
among others: a) input on real users’ discourse
patterns, which were in turn used for design-
ing the prompts and building the grammars, b)
insight in users’ understanding of the domain
and the application, which was in turn used for
developing the task list and the disambiguation
and help sub-dialogues, as well as deciding upon
the dialogue structure and the type of grammars,
and c) a realistic, “in-service” corpus, which was
used for the development of the statistical language
models and the NLU classifier presented in the
following section. For other, simpler parts of the
application such as the Self Service dialogues,
heuristic evaluation and walkthroughs were used.

At the end of the design phase, a complete
specification of call flows, prompts and back end
system communication was prepared and handed
for implementation. Figure 4 summarizes the
complete design process.

IMPLEMENTATION PHASE: SPEECH
RECOGNITION AND
UNDERSTANDING MODULES

Broadly speaking, implementation of a voice agent
can be broken down into the following processes:
a) language modeling and lexicon development
for the ASR module, b) grammar development
for the NLU component, c) prompt recording, d)
dialog coding and e) back end system integration.
This chapter focuses on the first two.

A speech recognition model typically used in
such applications is comprised of the following:

348

Design and Development of an Automated Voice Agent

• Acoustic models, i.e. models of the lan-
guage’s phones in context. Triphones are
usually modeled, that is models of a phone
taking into account the effect of the preced-
ing and following phone in its spectrum.
Acoustic model sets are in most cases al-
ready provided with the speech recognition
platform.

• Dictionary. The dictionary maps word
spellings to pronunciations (i.e. phone se-
quences). Standard dictionaries are pro-
vided with the ASR platform, but most
often customized dictionaries also need
to be developed to cope with missing
pronunciations.

• Language models. Language models
are grammar networks that constraint the
recognizer’s search space by specifying
permissible word sequences. The type of
language model used constitutes a critical
feature of an automated voice agent, as “it
affects every aspect of VUI design, from
the wordings of prompts to dialog strategy,
from call flow to the organization of the
complete application” (Cohen et al., 2004).
Furthermore, the choice of language model
used for recognition determines to a great

extent the choice of NLU techniques as
well.

For the NLU component of commercial spoken
dialogue applications, rule based interpretation
grammars or robust interpretation grammars
are most commonly used, while more advanced
stochastic NLU techniques are sometimes also
an option.

Following are the most common techniques
employed for language modeling in Automatic
Speech Recognition (ASR) for practical spoken
dialogue systems, along with the NLU techniques
that are typically coupled with – interested readers
may refer to Huang et al. (2001) for a thorough
introduction to language modeling:

• Rule based context free or non deter-
ministic finite state grammars, where
permissible word sequences are specified
by manually written production rules of
the form A → β in which A is a non termi-
nal node and β is a sequence of terminal
and/or non terminal nodes. High level con-
cepts such as “Destination” or “City” are
typically non terminals, while actual words
such as “London” or “Athens” are termi-

Figure 4. AVA: design phase

349

Design and Development of an Automated Voice Agent

nals. Production rules can be augmented
with probabilities that allow the recognizer
to discriminate among competing recog-
nition hypotheses. Rule based grammars
are used both for ASR defining the recog-
nizer’s search space, as well as interpreta-
tion. In the latter case production rules are
augmented with semantic attachments that
typically return slot-filling values.

• Statistical Language Models (SLMs),
where n-grams are trained on user’s utter-
ances to compute the probability of word
sequences. N-gram language models com-
pute the probability that a word w will
follow given the preceding n-1 words as
context. Typically bigram or trigram mod-
els are used, where n=2 and 3 respectively.
For most applications SLMs are coupled
with robust NLU grammars. Instead of
parsing the whole string passed on by the
recognizer, robust grammars perform word
or phrase spotting, searching the string and
assigning semantic values to meaningful
parts only. Alternatively, for some tasks
machine learning techniques can be used
for NLU as well. In particular, supervised
learning using machine learning algorithms
may be used for classification of utterances
according to a rich set of features. These
features may be word or sentence-related,
grammatical, lexical, semantic, such as
placement of the words in the utterance,
number of words in an utterance, content
or functional word flag, part-of-speech,
type of phrase, type of utterance (question,
verification, disambiguation, explanation,
statement, positive/negative, etc.), and
so on. All the above can be set for words
preceding and following the word that the
features are assigned for, if it is deemed
necessary.

Rule based grammars are suitable for well
defined, simple domains, where users’ input is

less variable and more predictable. As they are
written by hand, there is no need for collecting
training data, and they can be easily updated by
simply adding more rules to the grammar. SLMs
on the other hand are suitable for large, complex
domains, where it is hard to predict and manu-
ally specify all permissible word combinations
in advance. Manually creating such a set of rules
can be a hard, time consuming and possibly inef-
fective endeavor.

The out-of-grammar rate is typically high, and
adding more rules often has no improvement in
performance. Since the vocabulary size increases,
the number of potentially confusable competing
recognition hypotheses increases as well. This in
turn leads to a decrease in in-grammar recognition
accuracy. On top of that, long and complex utter-
ances typically exhibit a higher rate of disfluen-
cies (Shriberg, 1994), such as hesitations, repairs,
phrase fragments and filled pauses, which are hard
to cope with in a rule based grammar.

In contrast SLMs paired with robust NLU
grammars or NLU classifiers lift the need to
match the whole utterance string, thus allowing
greater flexibility and variation in users’ input,
and enabling the use of open-ended prompts, less
restrictive dialogue strategy and more natural
interaction in general. Furthermore, through n-
gram smoothing techniques such as probability
discounting and backing off strategies, SLMs
can accommodate for unknown words and less
frequent or unseen sequences.

However, training a SLM requires a large
amount of utterances to be collected and tran-
scribed. As an indication, for a typical large
scale application of a ~2000 word vocabulary
a training set of ~20000 utterances is required.
Collecting and transcribing such a corpus can
be a cumbersome process that often presupposes
the existence of an almost complete or deployed
system. Cohen et al. (2004) suggest building an
initial smaller corpus, and collecting additional
utterances during or after pilot phase. The methods
suggested for the collection of the initial corpus

350

Design and Development of an Automated Voice Agent

are: a) WOZ testing and b) using a rule based
grammar for recognition, which is replaced by a
SLM as soon as the required amount of training
data is collected. Human-human dialogues could
also be used if available. All the above methods
face the drawbacks already mentioned, but they
can serve as a first, better or worse, approximation
to an adequately performing production system.

SLMs can be coupled with robust NLU gram-
mars or NLU classifiers to interpret the recognized
string. While robust NLU grammars can more
effectively handle disfluencies compared to rule
based grammars, there is still problem when it
comes to long span grammar rules, as the gram-
mar can only match meaningful parts in a serial,
continuous manner. Discontinuous semantic infor-
mation due to hesitations or scrambled word order
may still cause problems. The latter is particularly
true for free word order languages, where there
is no restriction and therefore greater variation in
the order in which syntactic constituents appear
within a sentence.

Moreover the developer still needs to write
rules by hand. NLU classifiers on the other hand
automatically learn these rules from a set of
training data. The corpus for training the SLM is
also used for training the classifier, so there is no
need to collect or transcribe a new corpus. Still,
the existing corpus needs to be annotated with
appropriate semantic values, which in turn con-
sumes people and time resources. NLU machine
learning based classifiers could outperform rule
based grammars, as they are:

• more robust to discontinuous semantic
information (caused by extraneous, irrel-
evant input or disfluencies) and “scram-
bled” word order,

• better at resolving ambiguities, since they
are trained as to which interpretation to
choose,

• using preprocessing such as stemming to
efficiently manage highly inflectional lan-
guages, since a stemmer can easily auto-

mate the vast amount of rules needed to
capture the rich inflectional morphology,

• flexible enough to be allowed to select the
best algorithms suited for the specific do-
main and feature set and even test them in
order to decide on the most accurate model
to be used.

As an indication of performance, Wang et al.
(2002) report an up to 3 percentage points de-
crease in task classification error rate for support
vector classifiers compared to rule based robust
semantic parsers. However, NLU classifiers
that are trained with recorded single utterance
inputs are optimized for returning a single slot in
contrast to robust grammars. Thus, that type of
classification is more appropriate for applications
where complex utterances are mapped to a single
concept. A typical example of such applications is
call routing. Classification needs to get far more
complex in terms of training data and feature
annotation in order to be able to predict multiple
targets (concepts or concept categories).

On a final note, maintenance and support issues
should be addressed and taken into consideration
when deciding upon the type of grammar used
and when building it as well. In industry fields
such as mobile telephony, after a period of time,
as new products and services are introduced to
the market and others are withdrawn, the recogni-
tion and interpretation grammars may no longer
achieve high coverage of the caller’s input and fail
to interpret the caller’s request correctly.

In the case of rule based grammars, updates can
be more straightforward, as new rules can be more
easily, manually added to the existing grammar.
In the case of SLMs and NLU classifiers, on the
other hand, new utterances need to be collected
from scratch, transcribed and annotated, in order
to retrain, test and optimize the new, updated
models. Nevertheless, as grammar and dialogue/
system type are tightly interconnected, updates
in rule based grammars may induce significant
changes in dialogue structure and prompts.

351

Design and Development of an Automated Voice Agent

Since rule-based grammars require properly
restricting user’s input, in order to be effective,
adding or eliminating services (i.e. slots or slot
values) typically results in changes in the menu
hierarchy and/or the content of prompts. In con-
trast, statistical models coupled with open ended
prompts and less restrictive dialogue strategies
enable the sustainment of basic dialogue structure,
eliminating the need for redesign and allowing for
a smooth transition between old and new system
versions. In any case, developers should try to
anticipate changes and provide means to easily
and quickly cope with these changes.

Finally, with regards to the whole develop-
ment process, it is important to stress out that
implementation is inevitably coupled with test-
ing, including usability testing, often resulting in
redesign of initial system parts.

IMPLEMENTING AVA

First, the ASR model was created. In AVA’s case the
mock up application proved to be the only means
for collecting a production quality, “realistic”,
representative and adequate in size corpus early
in the development cycle. Approximately 20,000
utterances were collected and transcribed. 10% of
the corpus collected was used as a test set and the
rest of the corpus was used for training the SLM.

To achieve greater robustness, classes of words
were defined and a class-based language model
was trained. Class-based language models consti-
tute an effective way to deal with sparse data, as
rarely occurring words of similar semantic func-
tion are clustered under the same generalized class;
probabilities are then estimated for the generalized
class alone and inherited by all words under it.
Huang et al. (2001) note that “for limited domain
speech recognition, the class-based n-gram is very
helpful as the class can efficiently encode semantic
information for improved keyword spotting and
speech understanding accuracy”.

The test corpus was then used to tune the lan-
guage model and optimize recognition parameters
accordingly. The platform default values for most
parameters are usually optimal, but developers will
still need to optimize pruning, language model
scaling and word insertion probability values at
least, as well as define language model order (n)
and discounting strategy. Finally, domain specific
dictionaries were built with pronunciations for
words missing from standard dictionaries, mainly
involving the domain’s jargon.

Next, the NLU components were developed.
In accordance with our initial design choices an
NLU machine learning classifier was developed
for the less restricted, open-ended part of AVA. In
order to train the classifier, the existing training
corpus was annotated with the correct service tag.
Similarly, the test set was annotated and used to
optimize the parameters of the classifier.

At the same time, robust sub-grammars were
developed, so that particular dialogue states (e.g.
confirmation, disambiguation, error-handling and
self-service sub-dialogues) could be handled. The
latter were tested for interpretation accuracy and
coverage and ambiguities to ensure that the test
set was completely and correctly interpreted,
and ambiguous utterances were appropriately
resolved. Furthermore, pronunciation tests were
automatically performed to identify missing
pronunciations. The results of the latter were
fed directly into the development process of the
dictionaries for ASR.

In order to cope with the maintenance and
upgrade challenges posed by the constant changes
and product updates in the fast paced, highly com-
petitive field of mobile telephony, the following
solutions were employed:

• Classes for frequently changing products
were defined (cf. class based language
model), so as to avoid the need for retrain-
ing the statistical models every time a prod-
uct under the predefined class was added
or withdrawn. For example, Tariff Plans,

352

Design and Development of an Automated Voice Agent

which were subject to frequent changes,
formed a typical class for the mobile tele-
phony domain.

• Due to a detailed hierarchical classifica-
tion of the caller’s request, future servic-
es were proactively accommodated for.
Classification was based on exhaustive ser-
vice domain ontology rather than available
routing destinations. When the service cat-
egories falling under the same super-class
were routed to the same queue, the model
used the super-class for default routing.
Maintaining the underlying service break-
down made future possible changes to
subcategories easy to handle, while newly
added services (new sub-classes) could
possibly fall under an existing super-class.

• A system management tool was developed
that allowed the customer care depart-
ment to perform low complexity, yet fre-
quently occurring changes, such as queue
reassignments.

While the ASR and NLU modules were be-
ing developed, most of the dialogue manager

behaviour had been coded. Once testing for each
module was completed, the different components
of AVA were integrated. Integration with the back
end database and existing CTI (Computer Tele-
phony Integration) software followed. At the end
of the phase a fully integrated working system
was ready for evaluation, pilot phase, final tuning
and full deployment. Figure 5 summarizes AVA’s
implementation process.

CONCLUSION

The development of a successful automated voice
agent depends on both effective underlying tech-
nology as well as appropriate design choices. In
fact, these two aspects of system development
are by no means independent; on one hand,
design choices are often restricted or expanded
by technology limitations or capabilities, while
on the other hand technology effectiveness may
be corroborated or undermined by valid or poor
design respectively.

In this regard, this chapter focused on both de-
sign methodology and implementation techniques,

Figure 5. AVA: implementation phase

353

Design and Development of an Automated Voice Agent

analysing the advantages and disadvantages of
tools available in the process of building an auto-
mated voice agent, illustrating the choice and use of
them in light of a real life paradigm. Understanding
of the nature, feasibility and effectiveness wise,
of each tool is the key in making the best choice
possible, as no readily available, fool-proof rules
of thumb can always be safely employed. Rather
one should focus on the analysis of the specifics
of each system separately.

In the case of AVA, the mock up proved to
be the optimal technique for both design and
implementation, as it provided invaluable re-
sources shared by both phases. In case of other
applications such a solution may not even be an
option, often for reasons extraneous to the core
system engineering perspective such as company
policy prohibiting the exposure of an incomplete,
mock up system to the entire customer base. In
any case, a combination of available techniques
should be employed.

Finally, testing was shown to be a key feature
embedded in all steps of a voice agent’s lifecycle.
Usability testing, in particular, constitutes one of
the most promising methods for making success-
ful design choices, being part of the user-centered
design paradigm. Bringing the user perspective
to the design of the voice agent as early in the
process as possible, as well as iterating through
design, implementation and testing cycles are
imperative for the creation of effective and user
friendly automated voice agents.

REFERENCES

Ai, H., Raux, A., Bohus, D., Eskenazi, M., &
Litman, D. (2007). Comparing spoken dialog
corpora collected with recruited subjects versus
real users. In Proc. of the 8th SIGdial workshop
on Discourse and Dialogue.

Allen, J. F. (1995). Natural language understand-
ing. Menlo Park, CA: Benjamin Cummings.

Allen, J. F., Dzikovska, M., Manshadi, M., &
Swift, M. (2007). Deep linguistic processing for
spoken dialogue systems. In Proceedings of the
ACL 2007 Workshop on Deep Linguistic Process-
ing, Prague, June.

Allen, J. F., Ferguson, G., & Stent, A. (2001). An
architecture for more realistic conversational sys-
tems. In Proceedings of Intelligent User Interfaces.

Allen, J. F., Miller, B. W., Ringger, E., & Sikorski,
T. (1996). Robust understanding in a dialogue
system. In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics.

Attwater, D., Edgington, M., Durston, P., & Whit-
taker, S. (2000). Practical issues in the application
of speech technology to network and customer ser-
vices applications. Speech Communication, 31(4),
279–291. doi:10.1016/S0167-6393(99)00062-X

Balentine, B., & Morgan, D. (1999). How to
build a speech recognition application: A style
guide for telephony dialogues. USA: Enterprise
Integration Group.

Chu-Carroll, J., & Carpenter, B. (1999). Vector-
based natural language call routing. Computa-
tional Linguistics, 25(3), 361–388.

Cohen, M., Giancola, J. P., & Balogh, J. (2004).
Voice user interface design. Addison-Wesley.

Cohen, P. R., & Perrault, C. R. (1979). Ele-
ments of a plan-based theory of speech acts.
Cognitive Science, 3(3), 177–212. doi:10.1207/
s15516709cog0303_1

Core, M. G., & Allen, J. F. (1997). Coding dialogs
with the DAMSL annotation scheme. In Working
Notes of AAAI Fall Symposium on Communicative
Action in Humans and Machines, Boston, MA.

Dahl, D. (Ed.). (2004). Practical spoken dia-
logue systems. Kluwer Academic Publishers.
doi:10.1007/978-1-4020-2676-8

354

Design and Development of an Automated Voice Agent

Fellbaum, K., & Kouroupetroglou, G. (2008).
Principles of electronic speech processing with
applications for people with disabilities. Technol-
ogy and Disability, 20(2), 55–85.

Fischer, M., Maier, E., & Stein, A. (1994). Gen-
erating cooperative system responses in informa-
tion retrieval dialogues. In Proceedings of 7th
International Workshop on Natural Language
Generation (IWNLG 7), Kennebunkport, Maine.

Fraser, J., & Gilbret, G. (1991). Simulating speech
systems. Computer Speech & Language, 5, 81–99.
doi:10.1016/0885-2308(91)90019-M

Freitas, D., & Kouroupetroglou, G. (2008). Speech
technologies for blind and low vision persons.
Technology and Disability, 20(2), 135–156.

Galitz, W. O. (2007). The essential guide to user
interface design. Wiley Publishing, Inc.

Garfield, S., & Wermter, S. (2002). Recurrent
neural learning for helpdesk call routing. Lecture
Notes in Computer Science 2415/2002, Artificial
Neural Networks. Berlin/Heidelberg, Germany:
Springer.

Garfield, S., & Wermter, S. (2006). Call clas-
sification using recurrent neural networks, sup-
port vector machines and finite state automata.
[Springer-Verlag.]. Knowledge and Information
Systems, 9.

Gorin, L., Riccardi, G., & Wright, J. H. (1997).
How may I help you? Speech Communication, 23,
113–127. doi:10.1016/S0167-6393(97)00040-X

Gould, J. D., & Lewis, C. (1985). Designing for
usability: Key principles and what designers think.
Communications of the ACM, 28(3), 300–311.
doi:10.1145/3166.3170

Grosz, B. J., & Sidner, C. L. (1986). Attention,
intentions, and the structure of discourse. Com-
putational Linguistics, 12(3), 175–204.

Gupta, N., Tur, G., Hakkani-Tur, D., Bangalore,
S., Riccardi, G., & Rahim, M. (2006). The AT&T
spoken language understanding system. IEEE
Transactions on Speech and Audio Processing.

Harris, R. A. (2005). Voice interaction design:
Crafting the new conversational speech systems.
Elsevier.

Hempel, T. (2008). Usability of speech dialog
systems: Listening to the target audience. Springer-
Verlag.

Hirschberg, J., Nakatani, C., & Grosz, B. (1995).
Conveying discourse structure through intonation
variation. In Proceedings of the ECSA Workshop
on Spoken Dialogue Systems: Theories and Ap-
plications, Visgo, Denmark.

Huang, X., Acero, A., & Hon, H. W. (2001). Spoken
language processing: A guide to theory, algorithm
and system development. Prentice Hall PTR.

Jurafsky, D., & Martin, J. H. (2000). Speech and
language processing. An introduction to natural
language processing, computational linguistics,
and speech recognition. Prentice-Hall.

Kamm, C. A., & Walker, M. A. (1997). Design
and evaluation of spoken dialogue systems. In
Proc. of the IEEE Workshop on Automatic Speech
Recognition and Understanding, Santa Barbara
(CA), 14–17.

Kouroupetroglou, G. (2009). Universal access in
public terminals: Information kiosks and ATMs.
In Stephanidis, C. (Ed.), The universal access
handbook (pp. 48.1–48.19). Florida, USA: CRC
Press. doi:10.1201/9781420064995-c48

Kouroupetroglou, G., & Spiliotopoulos, D. (2009).
Usability methodologies for real-life voice user
interfaces. [IJITWE]. International Journal of
Information Technology and Web Engineering,
4(4), 78–94. doi:10.4018/jitwe.2009100105

355

Design and Development of an Automated Voice Agent

Kowtko, J., Isard, S., & Doherty, G. M. (1993).
Conversational games within dialogue. Research
paper 31, Human Communication Research Cen-
tre, University of Edinburgh.

Larson, J. A. (2002). VoiceXML: Introduction to
developing speech applications. NJ: Prentice Hall.

Lauesen, S. (2005). User interface design: A soft-
ware engineering perspective. Addison-Wesley.

Lee, C., & Chang, J. S. (2002). Rapid prototyping
an operator assisted call routing system. ISCSLP
2002, Taipei, Taiwan.

McGlashan, S., Burnett, D. C., Carter, J., Dan-
ielsen, P., Ferrans, J., & Hunt, A. … Tryphonas,
S. (2004). Voice Extensible Markup Language
(VoiceXML) version 2.0. Retrieved from http://
www.w3.org/TR/voicexml20.

McTear, M. F. (2004). Towards the conversational
user interface. Springer Verlag.

Nielsen, J. (1995). Technology transfer of heuristic
evaluation and usability inspection. Presented at
the IFIP INTERACT’95 International Conference
on Human-Computer Interaction, Lillehammer,
Norway.

Nielsen, J., & Mack, R. L. (1994). Usability inspec-
tion methods. New York, NY: John Wiley & Sons.

Norman, D. (1988). The design of everyday things.
New York, NY: Doubleday/Currency.

Norman, D. A., & Draper, S. W. (1986). User
centered system design: New perspectives on
human-computer interaction. Mahwah, NJ: Law-
rence Erlbaum Associates.

Noth, E., Batlinera, A., Warnkea, V., Haasa, J.,
Borosb, M., & Buckowa, J. (2002). On the use
of prosody in automatic dialogue understand-
ing. Speech Communication, 36(1-2), 45–62.
doi:10.1016/S0167-6393(01)00025-5

Pellom, B., Ward, W., Hansen, J., Cole, R., Ha-
cioglu, K., & Zhang, J. … Pradhan, S. (2001).
University of Colorado dialog systems for travel
and navigation. HLT-2001, San Diego.

Pieraccini, R., & Huerta, J. M. (2008). Where
do we go from here? Research and commercial
spoken dialogue systems. In Dybkjaer, L., &
Minker, W. (Eds.), Recent trends in discourse and
dialogue. Springer.

Pitt, I., & Edwards, A. (2003). Design of speech-
based devices: A practical guide. Springer.

Pulman, S. (2002). Relating dialogue games to
information state. Speech Communication, 36,
15–30. doi:10.1016/S0167-6393(01)00023-1

Riccardi, G., Gorin, A. L., Ljolje, A., & Riley, M.
(1997). A spoken language system for automated
call routing. In. Proceedings of ICASSP, 1997,
1143–1146.

Rubin, J., & Chisnell, D. (2008). Handbook of
usability testing, 2nd edition: How to plan, design,
and conduct effective tests. Wiley Publishing, Inc.

Shriberg, E. (1994). Preliminaries to a theory of
speech disfluencies. PhD thesis, University of
California, Berkeley, CA.

Sidner, C. (2004). Building spoken-language col-
laborative interface agents. In Dahl, D. (Ed.), Prac-
tical spoken dialogue systems. Kluwer Academic
Publishers. doi:10.1007/978-1-4020-2676-8_10

Spiliotopoulos, D., & Kouroupetroglou, G. (2010).
Usability methodologies for spoken dialogue Web
interfaces. In Spiliotopoulos, T., Papadopoulou,
P., Martakos, D., & Kouroupetroglou, G. (Eds.),
Integrating usability engineering for designing the
Web experience: Methodologies and principles.
Hershey, PA: IGI Global. doi:10.4018/978-1-
60566-896-3.ch008

356

Design and Development of an Automated Voice Agent

Spiliotopoulos, D., Stavropoulou, P., & Kourou-
petroglou, G. (2009). Spoken dialogue interfaces:
Integrating usability. Lecture Notes in Computer
Science, 5889, 484–499. doi:10.1007/978-3-642-
10308-7_36

Stavropoulou, P., Spiliotopoulos, D., & Kourou-
petroglou, G. (2011). Resource evaluation for
usable spoken dialogue interfaces: Utilizing hu-
man – human dialogues. In preparation.

Stent, A., Dowding, J., Gawron, J. M., Bratt,
E. O., & Moore, R. (1999). The CommandTalk
spoken dialogue system. In Proceedings of the
Thirty-Seventh Annual Meeting of the ACL, (pp.
183-190).

Turunen, M., Hakulinen, J., & Kainulainen, A.
(2006). Evaluation of a spoken dialogue system
with usability tests and long-term pilot studies:
Similarities and differences. In Proceedings of
Interspeech.

Wahlster, W. (2000). Verbmobil: Foundations of
speech-to-speech translation. Berlin, Germany
& New York, NY: Springer.

Walker, M. A. Langkilde-Geary, I., Wright Hastie,
H., Wright, J., & Gorin, A. (2002). Automatically
training a problematic dialogue predictor for the
HMIHY spoken dialogue system. Journal of
Artificial Intelligence Research (JAIR).

Wang, Y., Acero, A., Chelba, C., Frey, B., &
Wong, L. (2002). Combination of statistical and
rule-based approaches for spoken language un-
derstanding. In Proceedings of the International
Conference on Spoken Language Processing,
Denver, CO.

Weinschenk, S., & Barker, D. T. (2000). Design-
ing effective speech interfaces. John Wiley &
Sons, Inc.

Williams, J. D., & Witt, S. M. (2004). A compari-
son of dialog strategies for call routing. [Springer
Netherlands.]. International Journal of Speech
Technology, 7.

Zitouni, I., Hong-Kwang, J. K., & Chin-Hui, L.
(2003). Boosting and combination of classifiers
for natural language call routing systems. Speech
Communication, 14.

KEY TERMS AND DEFINITIONS

Automated Call Routing Application: Inter-
active Voice Response (IVR) based application
that automatically routes incoming phone calls to
appropriate destinations. Intelligent routing can be
based on parameters such as DTMF or voice input
interpretation, caller identification or time of day.

Automated Voice Agent: Program capable of
communicating with users by both understanding
and producing speech within a specific domain.
It is typically comprised of the following basic
modules: the Automatic Speech Recognition
module that converts acoustic user input into
text, the Natural Language Understanding mod-
ule that semantically interprets it, the Dialogue
Manager that handles the conversation flow, the
Natural Language Generator that generates system
prompts in written form, and the Text to Speech
Synthesizer that converts the written prompts to
speech.

NLU Machine Learning Based Classifier: It
is a system programmed to automatically learn to
recognize complex patterns and make intelligent
decisions based on data; the difficulty lies in the
fact that the set of all possible behaviors given all
possible inputs is too large to be covered by the set
of observed examples (training data). Trained for
natural language understanding, it automatically
extracts one or more possible interpretations from
a single natural language input.

357

Design and Development of an Automated Voice Agent

Robust Natural Language Understanding
(NLU) Grammar: Rule based word spotting in-
terpretation grammar. Instead of parsing the whole
user utterance, a robust grammar performs word
or phrase spotting, searching the utterance and as-
signing semantic values to meaningful parts only.

Rule Based Grammar: A context free gram-
mar, where permissible word sequences are
specified by manually written production rules
of the form A → β in which A is a non terminal
node and β is a sequence of terminal and/or non
terminal nodes. It is used for speech recognition
– restricting the recognizer’s search space – as
well as speech interpretation – augmented with
slot filling semantic rule attachments.

Statistical Language Model (SLM): N-gram
model trained on domain specific corpora in order
to compute the probability of word sequences.
Used for Automatic Speech Recognition, it is

essentially a model of what the callers are likely
to say when interacting with the system.

Usability: Attribute that refers to various types
of interfaces, measured and described in terms of
usefulness, effectiveness, efficiency, learnability
and user satisfaction. It denotes the extent to
which a system can be used to achieve the goals
it was designed for with accuracy, completeness
and speed in a user-friendly, easy-to-use and
learn manner.

Usability Testing: Set of methods and schemes
for assessing the user’s experience when inter-
acting with a system and evaluating usability
attributes such as effectiveness, efficiency and
user satisfaction. Typical usability tests for speech
based systems include Wizard-of-Oz testing, user
testing with limited functionality or fully working
systems, usability inspection etc.

